SDK-51 MCS™-51
SYSTEM DESIGN KIT
USER’S GUIDE

Manual Order No.: 121588-002
FBE Research Co. Inc. Property

O

5

SDK-51 MCS™-51
SYSTEM DESIGN KIT
USER’S GUIDE

Manual Order No.: 121588-002
FBE Research Co. Inc. Property

| Copyright © 1981 Intel Corporation
: Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 :

PRINT

REV. REVISION HISTORY DATE
-001 Original Issue 2/81
-002 Minor Revisions 8/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intelevision Micromap
CREDIT Intellec Multibus
i iRMX Multimodule
ICE iSBC Plug-A-Bubble
iCS iSBX PROMPT
im Library Manager Promware
INSITE MCS RMX/80
Intel Megachassis System 2000
Intel Micromainframe UPI

uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A429/881/2K NCG

PREFACE

This manual contains operating instructions, functional description, and appli-
cation programming examples for the MCS-51 System Design Kit (SDK-51). The
manual assumes the user has completed the assembly and initial checkout of the
kit as described in the following manual included with the kit:

SDK-51 MCS™-51 System Design Kit Assembly Manual, order number 121589.
In addition, the kit contains the following documents to supplement the discussions

in the user’s manual:

SDK-51 MCS™-51 System Design Kit Monitor Listing Manual, order number
121590.

SDK-51 CPU Board Schematics, part number 162072.
SDK-51 Display Board Schematic, part number 162075.

MCS™.51 Family of Single-Chip Microcomputers User’s Manual, order num-
ber 121517.

MCS™.5] Macro Assembler User’s Guide, order number 9800937.

The following manuals are not included in the kit, but are recommended for
reference:

Intel Component Data Catalog.
UPI-41A User’s Manual, order number 9800504.

iii

iv

SERVICE INFORMATION

If, following assembly, you cannot get your kit to operate satisfactorily, the Intel
Technical Support Center “Service Hotline” is available for assistance. This ser-
vice is provided during the hours of 8AM to 5PM (Mountain Time), Monday
through Friday. The toll-free Hotline telephone numbers are:

All U.S. locations except Alaska, Arizona, and Hawaii:
(800) 528-0595

All other locations:
(602) 869-4600

TWX Number:
910 - 951-1330

The Hotline is intended expressly to help you get your kit running and is not

intended to assist you in circuit designs or applications. Telephone assistance is
limited to one call per problem. If a problem cannot be remedied over the telephone,
you may, at your discretion, return your assembled kit to Intel for repair. To return
your kit, a Return Authorization Number must be obtained from the Technical Sup-
port Center prior to sending in your kit. Also, either a purchase order for the repairs
must be furnished to the center or a money order (no personal checks please) must
be included with the kit being returned. Repairs resulting from defective compon-
ents supplied with your kit will be done at no charge, and all prepayments will be
refunded. Repairs necessitated as a result of customer error, damage or misuse will
be billed at a fixed, flat-rate charge which will be quoted by the Technical Support

Center.
NOTE

The Technical Support Center will not repair an SDK-51 Kit that has
been modified and, when circuitry has been added to the user design
area, may request that the circuitry be disconnected prior to submitting
the kit to the center for repair.

CONTENTS

CHAPTER 1
GENERAL INFORMATION PAGE
Introduction 1-1
The Intel 8051 Microcontroller Family 1-1
The SDK-51 Conceptccocvvviinnnnnn.... 1-2
SDK-51 Specificationscoo... 1-3
CHAPTER 2
OPERATING INSTRUCTIONS
Introduction ...c..eeiemismmissvmessonissmies s 2-1
Keyboardttt 2-1
DDASDIAY v oo e s s s s 55 8 5607 8 5t 3 5 Bl 5 Wi 4 5 a0 3 ¥ i 2-2
Modes of Operationcccovuiii... 2-5
Keywords and Numeric Entries

in Commandscooviviiiniinann.. 2-6
Command Format Notation 2-8
Display Commands and Change

Commandscccciviiiiiiininann... 2-8
Overview of Commands and Operations 29
Power-Up, Command Entry, and Reset 2-9
Power-Up: :iuvsiswesssmmissmmessumess s s swmesson 29
Command Entrycoooiii 2-10
Reset ..o e 2-11
Program Execution Commands 2-11
Breakpoint Commands 2-11
GO Commandccoiiiiiiniinnninnnanns 2-13
Display Break Cause Command 2-16
Step Commandc..ociiiiiiiiiii 2-16
Memory Access Commands 2-20
Format Summaryccooviieiiienennnna.. 2-20
On-Chip Data Memory 2-21
Special Function Registers 2-23
Bit-Addressable Memory 2-25
User Program Memoryccoo... 2-27
External Data Memoryco... 2-28
System Monitor ROM 2-29
ASM Commandcoiiiiiiineiinnennennn. 2-29
DASM Commandccoiuiiieeennnnnnns 2-30
Top of Program Memory Command 2-31
Input/Output Operations 2-32
1/0 Object Code Format 2-33
Serial I/0 Interface Operations 2-34
Serial I/O Baud Rate 2-35
BAUD Commandcccoiiiiinneienenen. 2-35
Development System Interface 2-36
UPLOAD Commandccovveeiinnnn. 2-37
DOWNLOAD Command 2-38
LIST Commandc..iiiriiiiinnneenenann 2-39
Audio Cassette Interface 2-40
SAVE Commandcoiiiiiiieo.... 241
LOAD Commandccoiiiienenenennnnnnn. 2-42
Summary of Command Formats 2-43

CHAPTER 3

FUNCTIONAL DESCRIPTION PAGE
Introductioncciiiiiiiiiiiiii. 3-1
Microcontrollerc.cciiiiiiiiiii. 31
Memory Mappingccvviieiinnnnnnnn.. 3-2
Address Bus Control 3-3
Data Bus Control 3-3
User-Configurable Memory 3-3
MONIEOY s i mimes vanmsssmwms s simess wins s s s sss e 3-6
Reset Operationccoiiiiiinin.. 3-6
6 MHz Clock Generator 3-6
Parallel 1/0 Interface 3-6
UPI Controlo, 3-7
Keyboard and Display Timing Generation 39
Keyboard Control 39
Display Controlc.c.coiiiiiiiia... 39
Serial 1/0 Interface 3-10
Audio Cassette Interface 3-10
Top of Program (T.O.P.)

Memory Protect Circuit 3-11
Breakpoint Control 3-12
Glossary of Signal Lines 3-15
CHAPTER 4
APPLICATIONS
Accessing Monitor Utilities 4-1

Console Input (UCI)cc.oon.... 4-1
Console Output (CO)coovvvivinnnnnnn.. 4-2
Clear Display (NEWLINE) 4-3
Display a Message (PRINT_STRING) 4-3
Display a One-Byte Number (LSTBYT) 4-4
Display A Two-Byte Number (LSTWRD) 44
Read Console Status (UCSTS) 4-5
Time Delay (TIME) 4-5
Interrupt Considerations 45
Interrupt Program Example 4-6
8031 On-Chip UART ..., 4-8
On-Board Jumpers 4-8
Setting Baud Rate 4-9
Hexadecimal Addresses 4-10
Parallel I/0 Interfacing 4-10
Using Port P1 i, 4-10
Using the 8155-2c.cviiiieieniinnnerinnans 4-10
Scanning a 3 x 4 Matrix Keypad 4-13
Prototype Area Techniques 4-18
Memory Expansioncciivviiinnn. 4-19

APPENDIX A
TELETYPEWRITER MODIFICATIONS

APPENDIX B
ERROR MESSAGES

ILLUSTRATIONS

FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 SDK-51 Block Diagram 1-2 3-6 Functional Block Diagram 3-21
2-1 Keyboard Layout 2-2 4-1 Console Output Values 4-3
2-2 On-Chip Data Memory 2-22 4-2 Parallel I/0 Interface Connectors 4-11
2-3 1/0 Interface Locations 2-32 4-3 Auxiliary Keypad,
2-4 1/0 Object File in Hexadecimal Hardware Connections 4-13
Format 2-33 A-1 Teletype Component Layout A-2
2-5 Audio Cassette Interface Connections . 2-40 A-2 Current Source Resistor A-2 -
3-1 Memory Configuration Jumpers 3-5 A-3 Terminal Block A-2
3-2 UPI Control, Block Diagram 3-8 A4 Teletype Modifications A-3
3-3 Cassette Output Byte Stream 3-11 A-5 Relay Circuitcoovunn. A-3
3-4 Cassette Interface Waveforms 311 A-6 Mode Switch A-3
3-5 Breakpoint Logic, Simplified 3-12 A-7 Distributor Trip Magnet A4

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
1-1 SDK-51 Specifications 1-3 3-1 Memory Mapping 3-2
2-1 Display Character Set 2-3 3-2 Address Decoder Select Lines 3-3
2-2 Keywords and Abbreviations 2-7 313 ROM Jumper Configuration Chart 3-5
2-3 Memory Configuration Jumpers 2-10 3-4 8031 Interface With UPI Controller ... 3-8
2-4 User-Accessible Memory Spaces 2-20 3-5 Breakpoint Signals on the Data Bus .. 3-15
2-5 Keywords for 8051 Registers 2-21 4-1 Console Input Values 4-2
2-6 Register Addresses 2-24 4-2 Serial I/0 Jumpers for RS-232,
29 Bit Addresses in Register Memory 2-25 Slave Modecccovvunnin.. 4-8
2-8 Serial I/0 Connector J8 2-35 4-3 Serial [/0 Jumpers for RS-232,
2-9 Serial I/0 Jumpers for UPLOAD Master Mode 4-9
and DOWNLOAD 2-36 4-4 Serial I/0 Jumpers for Current Loop . 4-9
2-10 Serial I/0 Jumpers for LIST 4-5 Baud Rate Auto-Reload Values 4-9
Using RS-232 Protocol 2-39 4-6 Serial I/0 Register Addresses 4-10
2-11 Serial I/0 Jumpers for LIST 47 8155 Command Register Values 4-11
Using Current Loop 2-39 1-8 Parallel I/0 Port Addresses 4-12

vi

CHAPTER 1
GENERAL INFORMATION

Introduction

This manual contains operating instructions and circuit descriptions for the SDK-
51 System Design Kit. It assumes you have completed the assembly and initial
checkout of the SDK-51 as described in the Assembly Manual for the product (see
Preface for reference). The User’s Guide is organized into chapters as follows:

Chapter 1 introduces the SDK-51 concept and gives specifications for the basic
configuration.

Chapter 2 contains procedures for operating the on-board features of the SDK-51.
The chapter includes an overview of system operating modes, a description of the
keyboard and display, and an explanation of the notation for command formats
used in the chapter. Operating procedures include commands to be entered at the
keyboard and configuration and interface considerations where they apply. The
operations are grouped into four categories: Power Up, Command Entry, and Reset;
Program Execution Commands; Memory Access Commands; and Input/Output
Operations.

Chapter 3 provides background operating theory for the major functional blocks of
the SDK-51. The chapter includes a functional block diagram keyed to the
schematic drawings.

Chapter 4 gives information on programming the 8031 microprocessor, emphasizing
the use of the on-board facilities. The chapter includes suggestions for accessing the
keyboard and display, operating the 8031’s on-chip serial port through the SDK-
51’s serial 1/0 interface, using the on-board parallel I/0 interface, scanning the
auxiliary keypad, installing circuits in the prototyping area provided on the board,
and expanding the physical memory beyond the space provided on the board.

Appendix A describes the modification of a teletypewriter for use with the SDK-51.

Appendix B lists the error messages with brief explanations.

The Intel 8051 Microcontroller Family

The 8051 family has three members: the 8031, the 8051, and the 8751. The 8031 has
no on-chip program memory; execution is from external program memory. The
SDK-51 controller is an 8031. The 8051 has 4096 (4K) bytes of factory-masked ROM,
and the 8751 has 4K bytes of EPROM.

NOTE

In this manual, the term 8051 refers to the members of the 8051 family in
general, while the term 8031 refers to the controller on the SDK-51 in
particular.

The Intel 8051 Microcontroller is truly a “controller-on-a-chip”. In a 40-pin package
the 8051 combines:

12-MHz CPU;

Non-volatile 4Kx8 read-only program memory (8051 and 8751);
128x8 read-write data memory;

32 I/0 lines;

Two 16-bit timer/event counters;

11

General Information

1-2

Five interrupts at two priority levels;
On-chip oscillator and clock circuits;

Serial I/0 channel for multiprocessor communications, I/O expansion, or full
duplex UART.

With the addition of a +5 volt supply and a timing crystal, the 8051 Microcontroller
can perform all the computing, controlling and interfacing of a general purpose
microcomputer.

Please see the MCS-51™ Family of Single-Chip Microcomputers User’s Manual for
details. The Preface contains a full reference to that manual.

The SDK-51 Concept

The SDK-51 is tool for evaluating the 8051 microcontroller and for illustrating
types of applications for the 8051. It is furnished in kit form for low cost and to give
hands-on experience with 8051 designs.

The SDK-51 (see Figure 1-1) includes a 60-character ASCII keyboard, a 24-character
alphanumeric LED display, space for up to 16K bytes of RAM, space for up to 8K
bytes of ROM, a parallel I/0 interface with 22 I/0 port lines, a serial I/0 interface,
and a cassette I/0 interface,.

The address and data bus controllers separate the 8051 microcontroller’s
multiplexed address/data bus, creating a 16-bit address bus and an 8-bit data bus.

The Universal Peripheral Interface (UPI) controls the serial I/0 interface,
keyboard, display, and cassette interface, through the 8-bit UPI bus and other
control signals.

The monitor program for the SDK-51 is contained in 8K bytes of EPROM. The
monitor is located at the top of external memory to allow the lower part of memory
to be used for program development.

SERIAL

MONITOR
ROM 1/0 PORT

SERIAL 1/0
KEYBOARD DISPLAY INTERFACE
BREAKPOINT
LOGIC Pay =
BREAKPOINT
INTERRUPT LOGIC
CONTROL
‘ UPI BUS
uPI A
CONTROLLER
= ADDRS/ | l
8031 pDATA \| ADDRESS/DATA i :‘1
cotIoRO: DECODER E
NTROLLE
CASSETTE
INTERFACE

I

CASSETTE
1/0 PORT

VLI

N PAHI;llosLEL : :ﬂc 22 PARALLEL
V1 INTERFACE g VOPORTLINES

14

Figure 1-1. SDK-51 Block Diagram

0031

SDK-51 MCS-51

SDK-51 MCS-51

The breakpoint logic circuit allows external interrupts to the 8051 microcontroller
to be generated on specified data or program memory addresses. The breakpoint
logic also interrupts the controller when the UPI requires the attention of the 8031.

SDK-51 Specifications

Table 1-1 gives specifications for the SDK-51 in the basic configuration furnished in

the kit.

General Information

Table 1-1. SDK-51 Specifications

MICROPROCESSOR

System Monitor ROM
System Breakpoint RAM
User-configurable RAM

User-configurable ROM
On-chip Memory

CPU Intel 8031

Crystal 12 MHz

Teve 1 microsecond
MEMORY

8K bytes included (two 2732A EPROMSs)
4K bits included; provision for additional 4K bits

1K byte supplied (two 2114s); provision for up to
16K bytes

Provision for up to 8K bytes

Full read/write access to on-chip RAM and Register

memory from SDK-51 console and from user
program

ADDRESS SPACE
User configurable
System 1/0
Monitor

0000H through 7FFFH
8000H through DFFFH
EOOOH through FFFFH

POWER REQUIREMENTS

Vce +5 VDC (£5%), 3 amperes (minimum configuration,
1K byte of RAM)

Vrry +12 VDC and -12 VDC, 0.1 ampere (required for
serial 1/0O operation)

DIMENSIONS

Length 13.75 inches

Width 12 inches

Height 4 inches (with display mounted)

OPERATING ENVIRONMENT
Operating temperature
Operating humidity

0 to 50 degrees Celsius
0 to 90%, non-condensing

Microcontroller Bus
Parallel 1/0

UPI Bus

Serial 1/0

Cassette Interface

INTERFACE SIGNAL LEVELS

All signals TTL compatible
All signals TTL compatible
All signals TTL compatible
RS-232 or current loop

Suitable for microphone or line input to audio
cassette recorder

INTERRUPTS
Interrupt O
Interrupt 1

Reserved for system use.

User selectable; may be connected to INTR key on
keyboard

1-3/1-4

CHAPTER 2
OPERATING INSTRUCTIONS

Introduction

This chapter describes procedures for entering, executing, and storing user
programs on the SDK-51. Each procedure includes the monitor commands to be
keyed in by the user, and, where applicable, configuration steps and interface
considerations.

The SDK-51 operations are controlled by the monitor program stored in 8K (8192)
bytes of read only memory (ROM) at the upper end of SDK-51 on-board memory
(refer to discussion of SDK-51 memory map in Chapter 3). The system goes to the
beginning of the monitor program whenever power is turned on or when both
RESET buttons are pressed. The monitor program allows the user to perform the
following operations:

e Communicate with the SDK-51 using the on-board keyboard and display.
e Execute user programs in real-time or single-step.

e Set breakpoints on program or data addresses, and display the cause of the
most recent break.

e Assemble individual MCS-51 assembly language instructions into memory,
and disassemble memory into assembler equivalents, line-by-line.

e Write-protect the portion of on-board memory designated by the user as
program memory rather than data memory.

e Examine and modify memory locations, registers and bits in SDK-51 on-board
program/data memory and in the 8031’s on-chip data and register memories.

e Upload and download programs from an INTELLEC® development system.
e Read and write data to an audio cassette recorder.

e List the output of the SDK-51 to a printer or other external device.

The SDK-51 command language is modeled after that of the ICE™-51 In-Circuit
Emulator, allowing a minimum of relearning to use the emulator system.

NOTE

Chapter 4, Developing Applications, contains information on developing
user programs to run on the SDK-51 that most users will find essential.

Keyboard

The SDK-51 typewriter-like keyboard allows the user to enter commands and data.
It includes 59 characters plus space key, shift keys, CNTRL key and RUBOUT key
for line-by-line editing, a tab key, and an escape key (see Figure 2-1). An auxiliary
keypad contains the two system RESET keys and an INTR key (the INTR key
requires user configuration as described in chapter 4).

2-1

Operating the SDK-51 SDK-51 MCS-51

= o][vx nmﬂumuuumuu
aon|[][s][o][F][c][#] L]
Lsﬂl HEOE [_‘IF—HMH—IF:IHLSH'“WLJ"]

|L_____| ntel 00 10 20
1 N

EIE L

a

I
|
!
|
|

0032
Figure 2-1. Keyboard Layout

Pressing any of the alphanumeric keys results in the corresponding letter, number
or symbol being read out on the LED display. The functions of the other keys are as
follows:

RETURN Terminates command entry. Clears display or error message so
that next command can be entered.

ESC (Escape) Terminates current monitor operation and returns monitor
program control to the interrogation mode. Deletes any line being
entered on the display. (Exceptions: one ESC pauses autostepping,
two ESC’s are required to abort autostepping; ESC key has no
effect in cassette I/O LOAD or SAVE commands.)

SHIFT Selects the upper characters for keys with two functions.

TAB Aligns cursor on four-character boundaries.

RESET (two) Pressing the two RESET keys simultaneously halts the operation
of the SDK-51 at any stage of operation and returns the system to
its start-up (initialized) state. Pressing just one of the RESET keys
has no effect. See Power Up, Command Entry, and Reset later in
this chapter for details.

RUBOUT Deletes the rightmost character on the display each time it is

pressed. If the display is empty (that is, no characters after the
prompt), RUBOUT has no effect.

Display

The SDK-51 display consists of a 24-character LED readout. Each character of the
display is capable of displaying 64 different characters, including the space
character; see Table 2-1. Table 2-1 also shows the six-bit value that the UPI-41A
controller sends on the UPIBUS to the display. When characters are transmitted
between the UPI-41A and the 8031 controller, the 7-bit ASCII values are used; to
display the four characters without corresponding keys, program the 8031 to send
the 7-bit code (see Chapter 4 for details).

When commands or data are entered from the keyboard, characters are displayed
left to right starting with the leftmost LED readout (similar to the entry of data on a
CRT terminal). Only 24 characters can be entered (23 command characters plus a
RETURN, which does not count as a character); any characters entered following
the 23rd are ignored. Note that the cursor overlays the 24th character position, but
after 23 characters, only RETURN, RUBOUT, and ESC are valid.

2-2

SDK-51 MCS-51

Table 2-1. Display Character Set

6-Bit UPIBUS Display Keyboard
Value (Hex) Character Character

00H [0 @
01H = A
02H H B
03H [e
04H I D
05H E E
06H F F
07H E G
08H H H
09H T |

OAH J J

0BH K K
0CH L L
O0DH M M
OEH N N
OFH [] o
10H = P
11H J Q
12H H R
13H 5 s
14H T T
15H L] U
16H l/ v
17H A w

Operating the SDK-51

2-3

Operating the SDK-51

2-4

Table 2-1. Display Character Set (Continued)

6-Bit UPIBUS Display Keyboard

Value (Hex) Character Character
18H X X
19H b d Y
1AH Z z
1BH [[
1CH \ \
1DH]]
1EH /’ None
1FH < None
20H Space bar
21H ! !
22H H
23H + #
24H % $
25H 4 %
26H 4 &
27H I
28H 4 <
29H > >
2AH X .
2BH + &
2CH 2
2DH = N
2EH
2FH y /

SDK-51 MCS-51

SDK-51 MCS-51 Operating the SDK-51

Table 2-1. Display Character Set (Continued)

6-Bit UPIBUS Display Keyboard
Value (Hex) Character Character

30H D 0
31H | 1
32H C 2
33H 4 3
34H 4 4
35H g 5
36H f 6
37H] 7
38H H 8
39H g 9
3AH ;
3BH /
3CH Z None
3DH — .
3EH AN None
3FH A ?

Modes of Operation

The monitor has several modes of operation: interrogation mode (the default),
assembler mode, continuation mode, real-time execution mode, and single-step
execution mode.

The monitor enters the interrogation mode at power-up and following any system
reset. A flashing hyphen prompt is displayed at the left margin to indicate that the
system is in interrogation mode and is ready to accept a command. All commands
are entered through interrogation mode.

The assembler mode allows the user to enter instructions in 8051 assembly
language and assemble the instructions directly into on-board memory. Assembler
mode is initiated by the ASM command, and is terminated by pressing RETURN
instead of entering an instruction. The user can also disassemble on-board memory
into 8051 instruction mnemonics.

25

Operating the SDK-51 SDK-51 MCS-51

Continuation mode allows the user to enter a list of values for setting memory
contents without repeating the memory type keyword. See Memory Access
Commands in this chapter for details.

The real-time execution mode allows you to run the user code stored in program
memory. Execution begins when the user enters a GO command in interrogation
mode. Real-time execution can be controlled by breakpoints set by the user. If
breakpoints are used and a breakpoint is encountered, the program halts after
executing the instruction that contained the breakpoint address, then returns to the
interrogation mode. If breakpoints are not used (or encountered), the program runs
until the user terminates execution.

The single step execution mode allows you to run the user program one instruction
at a time, breaking between steps. The user can specify the stepping rate. Between
steps the system displays register values.

Keywords and Numeric Entries in Commands

An SDK-51 command begins with a command keyword that indicates the type of
operation to be executed; the command word may be followed by one or more
qualifiers that limit or define the parameters of the operation. For example, the
command:

BAUD = 600

sets the SDK-51 serial I/0 transfer rate to 600 baud. In this command, BAUD is the
command keyword, = is the assignment operator, and 600 is the baud rate
parameter.

The term keyword refers to words with fixed spellings that the SDK-51 monitor
interprets in defined ways. To save keystrokes and to allow you to enter the
extended versions of some commands within the 24-character display, most
keywords can be abbreviated to one, two, or three characters. Some of the command
qualifiers are also keywords (for example, DATA and RESET). Table 2-2
summarizes the command keywords and other keywords used in the SDK-51
command language.

NOTE

The MCS-51 assembly language mnemonics such as MOV and CLR are
also keywords, since their spelling and interpretation are system-
defined. The mnemonics are not listed in Table 2-2, since they are
defined in the MCS-51 assembler and component manuals. See the
Preface for references.

NOTE

The minimum abbreviations of some SDK-51 keywords differ from those
used for the same keywords in the ICE-51 command language. The
three-character abbreviations used in ICE-51 also work with the SDK-
51.

Command qualifiers can be numeric entries instead of keywords. Numeric entries
are of the following kinds:

digit Any hexadecimal digit from 0 to F
decimal-digit Any decimal digit from 0 to 9 (for the STEP command)

byte Hexadecimal number up to two digits (three digits when leading
zero required)

2-6

SDK-51 MCS-51 Operating the SDK-51

file-number A cassette file number (for the LOAD and SAVE commands)
consisting of up to four hexadecimal digits (up to five digits when
leading zero required)

address Hexadecimal number up to four digits (five digits when leading
zero required)
partition address [TO address]

With one exception, the monitor assumes hexadecimal (base sixteen) for numeric
entries (the exception is the rate parameter for the STEP command, where base ten
is assumed). In the text of this manual, hexadecimal numbers are identified with an
“H” suffix; for example: 0134H. The monitor does not require you to use the H
suffix; however, it may be entered without causing an error.

A partition contains one or more addresses. The second address (after the keyword
TO) must be equal to or greater than the first address, or an error occurs.

NOTE

The Monitor requires all numbers to begin with a numeric digit 0
through 9. Hexadecimal numbers must be preceded by a zero unless the
first digit is a numeral. Example: “7F” is acceptable, but “F7” must be
entered “OF7”.

Table 2-2. Keywords and Abbreviations

Minimum
Keyword Abbreviation
ABR ABR
ACC ACC
ASM AS
B B
BAUD BA
BR BR
CAUSE CA
CBYTE CB
DASM D
DATA DAT
DBYTE DB
DOWNLOAD DO
DPTR DP
FROM F
GO G
LIST LI
LOAD LO
ON ON
OR OR
ORG ORG
PC PC
PROGRAM PR
PSW PS
RBIT RBI
RBYTE RBY
RESET RES
SAVE SA
SP SP
STEP ST
TILL T
TMO TMO
TM1 ™M1
TO TO
TOP TOP
UPLOAD (0]
XBYTE XB

2-7

Operating the SDK-51

2-8

Command Format Notation

The syntax or general format of each command is described with a simple notation
system. The command notation shows what command keywords to use, indicates
parts of the command that can be omitted or included at the user’s option and
shows the places in the command where the user has a choice of several kinds of
entries. In the notation:

e Keywords are shown in ALL CAPS.
e Numeric entries are shown in lower case italics or underlined.

o Required entries are shown without any enclosures (brackets or braces), for
example:
UPLOAD patrtition
Both the command keyword UPLOAD and the numeric entry partition are
required in this command.
e Optional entries are enclosed in square brackets; for example:
ASM [ORG address]
The keyword ASM is required, the entry ORG address is optional.

e Entries that can be repeated at user option are enclosed in brackets and
followed by an ellipsis (...); for example:

ABR = partition [, partition] ...

The first partition is required; thereafter the user can add partitions separated
by commas to the end of the 24 character display.

e A choice of entries is shown by a vertical list (or “menu”) of the entries enclosed
in braces or brackets. A menu enclosed in square brackets means “select none
or one”’, for example:

FOREVER

TILL PROGRAM

TILL DATA

TILL PROGRAM OR DATA

In this command, All the entries after GO are optional. Of the menu in
brackets, select either none or one.

GO [FROM address]

A menu enclosed in curved braces means ‘“select one and only one”, for
example:

_ JON
LIaT= {RESET}

An entry is required following “LIST =”. Of the two possible entries in the
brackets, you must select one and only one.

Display Commands and Change Commands

The equals sign (=) is the assignment operator used to change values. When a
command keyword or phrase is entered without an equals sign, it indicates that the
current contents of the referenced object (memory location, register, breakpoint
memory) are to be displayed. When a command word or phrase is followed by an
equals sign, it means that the contents of the referenced object are to be set to the
values of the numeric entry or entries on the right of the sign. For example:

XBYTE 60F7
causes the information stored in memory location 60F7H to be displayed, whereas:
XBYTE 60F7 = 11

causes memory location 60F7H to be set to 11H.

SDK-51 MCS-51

SDK-51 MCS-51 Operating the SDK-51

Overview of Commands and Operations

The SDK-51 monitor commands and related operations are grouped for discussion
as follows:

e Power-Up, Command Entry, and Reset Operations

e Program Execution Commands
Set and display breakpoints (BR and ABR Commands)
Real-time execution (GO Command)
Display cause of last break in execution (CAUSE Command)
Single-step execution (STEP Command)

e Memory Access Commands

Display and change program and data memory (CBYTE, DBYTE,
RBYTE, XBYTE, and RBIT Commands)

Assemble and disassemble instructions (ASM and DASM Commands)

Set and display the highest address in the write-protected portion of
program memory (TOP Command)

e Serial I/0 Interface Operations
Jumper configuration and cable connection for serial I/O operations
Setting baud rate (BAUDD Command)
Development system interface (UPLOAD and DOWNLOAD Commands)
List output to external device (LIST Command)

e Audio Cassette Interface Operations
Cassette interface connections
SAVE and LOAD operations

Power-Up, Command Entry, and Reset

Use the following procedures to apply power to the SDK-51 board, enter commands,
and reset the system.

Power-Up

1. Connect the red wire on the SDK-51 power cable (pin 1) to the +5 VDC terminal
on the power supply; connect the black wire adjacent (pin 2) to the 5 volt return
terminal on the power supply.

Be sure that the + and - sides of the power supply are connected to the
proper SDK-51 power cable terminals: +5 volts (red); 5 volt return (black).
Applying reverse polarity to the power input terminals will damage
system components.

2. If serial 1/0 operations are desired, connect the blue wire on the power cable
(pin 4) to +12 VDC, and the yellow wire (pin 6) to -12 VDC. Connect the
remaining black wires to £12 volt return.

3. Place shorting plugs on the memory configuration jumpers to assign memory
address blocks to the memory areas installed on the board and to the
breakpoint memory (see Table 2-3).

29

Operating the SDK-51 SDK-51 MCS-51

4. If Memory 2 (ROM) is installed, check that jumper area U68 has been
connected correctly for the type of ROM used . Jumper socket U68 allows
jumper wires to be installed as required for the type of ROM devices used. Table
3-3 (in Chapter 3) shows the required jumper configurations and maximum
“crystal frequencies for five different types of ROMs.

5. Serial I/0 operations require additional jumper settings, as discussed later in -
this chapter.

Connect the power cable and apply power to the SDK-51 board.

7. The message SDK-51 MONITOR VER. nnnn appears on the display. The SDK-
51 is reset, program control goes to the beginning of the SDK-51 monitor
program.

8. Press the RETURN key. The monitor program enters its interrogation mode;
the prompt (flashing hyphen ‘') is displayed in the leftmost display character
position.

Table 2-3. Memory Configuration Jumpers

Address Blocks
Memory 0000H- 2000H- 4000H- 6000H-
Areas 1FFFH 3FFFH 5FFFH 7FFFH
Breakpoint W20* w24 was W32
Memory
Memory 2 w21 W25 W29* W33
(ROM)
Memory 1 W22 W26* W30 W34
(RAM)
Memory 0 w23* W27 W31 W35
(RAM)
*NOTE: W20, W23, W26, and W29 are the standard
settings for the minimum configuration supplied in the
kit.

Command Entry

Enter a command of up to 23 characters from the keyboard, followed by a
RETURN. If the command is in error, an error message “ERR = XX" is displayed.
Refer to Appendix B for details on the error messages.

Once the command has been executed, the prompt is displayed, indicating that the
system is ready for the next command.

To correct a command while it is being entered (before pressing RETURN), press
the RUBOUT key to delete characters from the right then enter the desired
characters.

To abort a command while it is being entered, press the ESC key. The display is
cleared, and the prompt is displayed.

To abort a command while it is being executed, press the ESC key. The command
halts where it happens to be. If the aborted command is a GO command, execution
of the user program halts after executing the current instruction.

NOTE

The ESC key has no effect on the LOAD, SAVE, UPLOAD, or
DOWNLOAD operations. To abort these data transfer operations, press
the RESET keys as described in the next section. The ESC key pauses
autostepping mode; see STEP command later in this chapter for details.

2-10

SDK-51 MCS-51 Operating the SDK-51

Reset

To reset the system to its initial state as after power-on, press both RESET keys at
the same time. Press RETURN to clear the sign-on message and obtain the prompt.

During the reset process, the 8031 microcontroller is reset to the status specified in
the MCS-51 User’s Manual; on-chip data RAM is affected by the Monitor during
reset, and is thus indeterminate after reset. The 8041A UPI, 8155-2 Parallel 1/ (0]
Interface and breakpoint logic are reset. User-configurable memory is not affected.

At reset, the TOP address set to 0000H, the serial I/O baud rate is set to 2400, and
LIST mode is set to RESET.

Program Execution Commands

The following commands are used to control the execution of user programs that
have already been written. The BR and ABR commands set breakpoint addresses.
The GO and STEP commands cause the system to enter execution mode from
interrogation mode. The CAUSE command displays the cause of the last break in
execution.

Breakpoint Commands

Function

Breakpoint commands BR and ABR set bits in breakpoint memory corresponding
to addresses in an 8K byte block of user-configurable memory selected by the user.
Breakpoints are enabled as program or data addresses with the GO command (next
section). When a breakpoint address is executed, the system interrupts the 8031 and
halts processing.

The BR command first resets the breakpoint RAM, clearing any previous match
values, then sets the specified address values. BR can also be used to display the
addresses in breakpoint memory where breakpoints have been set.

The ABR command sets breakpoints as well, but does not reset the breakpoint
RAM, allowing breakpoint combinations to accumulate in breakpoint memory.

Formats

BR

BR = RESET

BR = partition [, partition] ...
ABR = partition [, partition] ...

Display Breakpoints

To display the match addresses currently set:

BR
Individual match addresses are displayed one address at a time. If a partition (two
or more adjacent addresses) is set, the display has the format “address TO

address”. If more than one address or partition is set (not adjacent), the lowest
address is displayed, followed by a flashing comma; press RETURN to display the

2-11

Operating the SDK-51 SDK-51 MCS-51

remaining addresses one at a time. If no addresses are set, “BR=RESE” is

displayed.
NOTE

Breakpoint displays are always in the range from 0000H through
1FFFH. If the memory configuration jumpers are set to select a higher
range, add 2000H, 4000H, or 6000H to the addresses displayed to obtain
the actual breakpoints.

Reset Breakpoints .

To clear the breakpoint memory, the command is:

BR = RESET

Set Breakpoints (With Reset)

To set one or more match addresses, or partitions of match addresses, (after first
resetting any addresses already set), the format is:

BR = partition [, partition] ...

For example:
BR = 80, 90, 100 TO 110

The BR command clears any breakpoints previously set, then sets new breakpoints
at addresses 80H, 90H, and 100H through 110H.

Add Breakpoints (Without Reset)

To add one or more match addresses or partitions of addresses (without clearing
any previously set addresses), the format is:

ABR = partition [, partition]
For example:
ABR = 205, 280

The ABR command adds match addresses 2056H and 280H to any breakpoints
already set.

Operation

With the minimum SDK-51 configuration supplied with the kit, the breakpoint
RAM is 4K by 1 bit. In this configuration, the highest breakpoint address (relative
to the beginning of the 8K block) is OFFFH. An additional 4K by 1 bit of RAM can
be added, allowing breakpoints to be set on any address within an 8K byte block of
user configurable memory; memory configuration jumpers specify which 8K block
the breakpoint RAM represents. A reference to non-existent breakpoint memory is
ignored (the BR command still clears the locations in breakpoint RAM not selected
as breakpoints).

The user-configurable memory can contain both the user program instructions
(opcodes and operands) and data segments (e.g., tables, arrays, text). A given
breakpoint address must be one of the following:

o The address of an opcode in program memory (that is, the first address in an
instruction). User program memory access involves the PSEN/ signal from the

2-12

SDK-51 MCS-51 Operating the SDK-51

8031 controller; see User Program Memory later in this chapter and Breakpoint
Control in Chapter 4 for additional detail.

e The address of a byte of data in a MOVX instruction. Data memory access
involves the RD/ and WR/ signals from the 8031 controller; see External Data
Memory later in this chapter and Breakpoint Control in Chapter 4 for
additional detail.

To break on an opcode, first set the opcode address in breakpoint memory (with a
BR or ABR command), then enable program breakpoints (with a GO command).

To break on a data address, first set the address in breakpoint memory, then enable
data breakpoints (with a GO command). The GO command is discussed in the next
section.

Initially and after a reset, the breakpoint memory is cleared (no breakpoints are
set), and breakpoints are disabled.

When a breakpoint occurs, the system writes four bytes onto the stack.
The stack pointer is saved and restored, but you must allow for the four
extra bytes in assigning space for your stack. Stack overflow (SP greater
than 7FH) disrupts system operation.

NOTE

Since the system uses the interrupt structure to handle breakpoints
(including single stepping), the following restrictions on breaking
within interrupt routines apply:

1. The user program may not use or disable interrupt 0. See Interrupt
Considerations in Chapter 4 for details.

2. If your program uses high-priority interrupts, system features are
disabled while those interrupts are in progress.

3. If your program uses high-priority interrupts, breakpoints should
not be used within the high-priority interrupt routine (FORCENOP
circuit changes the user program).

4. After breaking in a low-priority interrupt routine, the Interrupt In
Progress flag remains set until cleared by a RETI instruction. For
proper operation, resume execution where it left off in the interrupt
routine, or clear the flag by executing a RETI instruction before
resuming execution at the outer level.

GO Command

Function

The GO command initiates program execution at real time (12 MHz crystal, 1
microsecond instruction cycle). The GO command can also include the starting
address, and can enable or disable program and data breakpoints.

Format
FOREVER
TILL PROGRAM
GO [FROM address] TILL DATA

TILL PROGRAM OR DATA

2-13

Operating the SDK-51 SDK-51 MCS-51

Begin Real-Time Execution

To begin real-time execution of the user program beginning with the instruction
currently addressed by the program counter, the command is:

GO

When the GO command is executed, the SDK-51 enters execution mode. During
program execution, the prompt is suppressed and the display contains the message
EXECUTION BEGUN. Execution continues until one of the following occurs:

The user presses the ESC key.

A breakpoint is encountered (applies only when breakpoints are enabled)

The program attempts to write to an address lower than the specified top of
program memory (TOP). See the TOP command for details.

The program attempts to execute across location 03H. This location is reserved
for system operation.

After execution breaks, the message EXECUTION HALTED PC=nnnn appears on
the display (nnnn is the value of the program counter after the last instruction
executed). Enter any command to clear the display. The last condition, execution
across location 03H, produces an error message instead of EXECUTION HALTED.
See Appendix B for details.

When the GO command is entered without any modifiers, the following default
conditions apply:

e The system uses the current program counter address as the start address.

e If program breakpoints or data breakpoints have been enabled by a previous
GO command (and have not been disabled), they remain in effect for the
current GO command.

Begin Execution, Specify Starting Address

To begin real-time execution at a specific starting address, the format is:
GO FROM address

For example, to begin at address 0100H:
GO FROM 100

This is equivalent to the commands:

PC = 100
GO

Begin Execution, Disable Breakpoints

To begin real-time execution and disable any previously enabled breakpoint
types (program or data), the format is:

GO [FROM address] FOREVER

Examples:

GO FOREVER
GO FROM 100 FOREVER

Both examples disable breakpoints. Note that breakpoint memory is not affected;
any addresses set remain set. When disabled, breakpoint address matches just

2-14

SDK-51 MCS-51 Operating the SDK-51

have nc effect on execution. The first example starts from the current program
counter, while the second specifies address 0100H as the start address.

Breakpoints are disabled at power-on and after reset.

Begin Execution, Enable Program Breakpoints

To begin real-time execution and enable the breakpoint addresses in breakpoint
memory that correspond to instruction addresses, the format is:

GO [FROM address] TILL PROGRAM
Examples:

GO TILL PROGRAM
GO FROM 100 TILL PROG ; Note abbreviation to PROG
; to fit in 23 characters

Both examples enable all addresses set in breakpoint memory. If an opcode is
fetched from any of the addresses set in breakpint memory, execution breaks after
completing that instruction. Operand fetches including data memory (MOVX)
fetches do not break execution, even if the operand or data address is set in break-
point memory; the user must ensure that the program addresses set in breakpoint
memory are opcode addresses, not operand addresses.

The entry “TILL PROGRAM” implicitly disables data breakpoints; see below for
ways to have both program and data breakpoints enabled.

Start Execution, Enable Data Breakpoints
To begin real-time execution and enable accesses to data addresses to break
execution, the format is:

GO [FROM address] TILL DATA
Examples:

GO TILL DATA
GO FROM 100 TILL DATA

Both examples enable the data addresses that are set in breakpoint memory. A read
or write to any of these addresses causes execution to break after that instruction.
The entry “TILL DATA” implicitly disables program breakpoints.

Start Execution, Enable Program and Data Breakpoints

To begin real-time execution and enable both program and data breakpoints, the
format is:

GO [FROM address] TILL PROGRAM OR DATA
Examples:

GO TILL PROGRAM OR DATA

G F 100 T PRO OR DAT
Both examples enable both program and data addresses to break execution. Note
that the second example contains abbreviations rather than the full keywords (G
for GO, F for FROM, T for TILL, PRO for PROGRAM, and DAT for DATA). The

abbreviations are required to fit the command within 23 characters plus the
RETURN.

2-15

Operating the SDK-51 SDK-51 MCS-51

Operation

With the GO command, the user has the option of specifying the starting address or
using the current program counter address as the default.

Similarly, the user has the option of specifying the types of breakpoint to be
enabled, or using the types previously enabled as the default. When program or
data breakpoints have been enabled, they remain enabled until they are disabled.

Note that the setting of breakpoint memory is independent of the type of
breakpoints enabled. This feature allows the user to set breakpoint addresses
without starting execution, to halt execution on program breakpoints only, to halt
on data breakpoints only, to halt on either program or data breakpoints (whichever
occurs first), and to disable all breakpoints without affecting the setting of

breakpoint memory.
NOTE

Because locations 0003H through 0005H are overwritten for system
interrupt handling, the user program is not allowed to execute across
this location with GO or STEP. Thus if you wish to begin execution at
location 0000H, that location must contain a jump to higher memory.

Display Break Cause Command

Function

The CAUSE command displays the reason for the most recent break in user
program execution.

Format
CAUSE
Operation
The displays produced by the CAUSE command are as follows:
Display Explanation
WHAT BREAK? No program execution has occurred since the most

recent power-on or reset.
USER ABORT User pressed ESC key during program execution.

GUARDED ACCESS The user program attempted to write to an address
designated by the user as write-protected (see TOP
command), or executed across location 3 (external
interrupt 0 vector used by Monitor).

DATA BREAK Data memory breakpoint occurred.
PROGRAM BREAK Program memory breakpoint occurred.
SINGLE STEP The last execution was single step; execution breaks

after each instruction in single step.

Step Command

Function

Step command STEP executes one or more instructions at user selected rate,
breaking after each instruction. After executing each instruction, the monitor
displays the contents of the program counter (PC), the accumulator (ACC), the data
pointer register (DPTR), and the stack pointer (SP). Optionally, the user can obtain
a display of a specified byte (or bit) from one of the memory spaces accessible to the
8031.

2-16

SDK-51 MCS-51 Operating the SDK-51

Format
STEP [FROM address] [, memory-type address] [, decimal-digit]
Where memory-type means one of the following keywords:

CBYTE Program memory

DBYTE On-chip data memory

RBYTE On-chip register memory
XBYTE External data or system memory
RBIT Bit-addressable memory

Please refer to Memory Access Commands later in this chapter for details on these
memory types.

Execute One Instruction

To single-step one instruction, the format is:
STEP [FROM address]
Examples:

STEP
STEP FROM 100

Both examples cause one instruction to be executed. The first example executes the
instruction at the address in the program counter; the second specifies the address
of the instruction explicitly.

After each instruction, the system displays the values of the updated program
counter, accumulator, data pointer register, and stack pointer. The format of the
display is:

Pnnnn Ann Dnnnn Snn

Where P identifies the four-digit hexadecimal address in the program counter, A
identifies the two-digit hexadecimal value of the accumulator, D identifies the four-
digit hexadecimal value of the data pointer register, and S identifies the two-digit
hexadecimal value of the stack pointer. In all cases, the value displayed is the one
that occurs after the instruction has been executed.

Execute One Instruction With Memory Display

In addition to the program counter and accumulator, you can display the contents
of one memory location after each instruction in single step. The format of the
display is:

Pnnnn Ann Dnnnn Snn (nn)

Where the P, A, D, and S fields are the program counter, accumulator, data pointer,
and stack pointer as described previously, and the value in parentheses is the data
byte requested by the user.

The format of the command is:

CBYTE address
DBYTE address
STEP [FROM address], RBYTE address
XBYTE address
RBIT address

2-17

Operating the SDK-51

2-18

NOTE

For CBYTE and XBYTE, the address may have up to four digits. For
DBYTE, the range for address is 00H through 7FH. For RBYTE, the
range is 80H through OFFH. For RBIT, the range is 00H through 7FH
for the portion of bit-addressable memory in the DBYTE space, and
segments of the range 80H through OF7H for bit addresses in the
RBYTE area. See Memory Access Commands later in this chapter for
details.

Examples:
STEP, DBYTE 0

This command executes one instruction, then displays working register RO (data
RAM address 00H) in addition to the program counter, accumulator, data pointer,
and stack pointer normally displayed.

STEP FROM 100, CBYTE 100

This command executes the instruction at address 0100H, and displays the opcode
at that address (in addition to the four standard registers).

STEP, XBYTE 7000

This command executes the intruction in the program counter, then displays the
byte at external address 7000H (in addition to the four standard registers).

STEP FROM 100, RBYTE 0DO

This command executes the instruction at address 100H, then displays the value of
the program status word (PSW register, address 0DOH in register memory), in
addition to the four standard registers.

STEP, RBIT 0D7

This command executes the instruction in the program counter, then displays the
(bit) value in the Carry (CY) flag (bit address 0D7H in register memory), along with
the four standard registers.

Execute in Autostep Mode

Instead of just one instruction per command, you can use autostep mode to step
through as many instructions as you wish. You can specify the rate at which
stepping occurs, and use any of the kinds of memory display between steps
discussed in the previous section. The format for initiating autostepping is:

STEP [FROM address] [, memory-type address], decimal-digit

The entry decimal-digit means a numeral, 0 through 9. The digit sets the
autostepping rate.

For each instruction in autostep mode, the monitor performs the following
operations:

Clears the display.

Enters execution mode.

Executes one instruction.

Breaks execution mode.

SUNE S

Displays updated program counter, accumulator, data pointer, and stack
pointer, and (optionally) the value from memory specified by the user.

6. Checks for ESC key (pause or abort) entered by the user.

SDK-51 MCS-51

SDK-51 MCS-51 Operating the SDK-51

7. Inserts an interval of time (approximately 0.5 seconds times the decimal-digit
entered by the user).

8. Begins the sequence again with operation 1 above. Operations 1 through 6 take
about 0.05 second (50 milliseconds).

NOTE

If LIST mode is ON, the autostep displays can be captured as a form of
non-real-time trace. Using LIST slows down the autostepping rate; the
amount depends on the LIST baud rate. See the LIST command in this
chapter for details

Pause and Abort in Autostep Mode

To halt the autostepping, press the ESC key. The system pauses execution with the
most recent information on the display.

To continue autostepping from a pause, press any key except ESC. Autostepping
continues with the instruction in the program counter, with the rate and display as
specified in the STEP command that began the autostep mode.

NOTE

The character key used to resume autostepping cannot be processed as a
character by the user program.

To abort the autostepping from a pause, press ESC again (i.e., press ESC twice to
abort autostepping). The system returns to interrogation mode.

Examples:

STEP, 0

This command initiates autostepping at the fastest rate (no delay interval between
operations), displaying the four standard registers after each instruction.

STEP FROM 100, 4

This command starts autostepping from address 0100H, with an interval of
approximately 2 seconds (4 times 0.5 sec) between steps. The four standard
registers are displayed after each instruction.

STEP F 100, RBY 0DO, 9

This command starts autostepping from address 0100H, with an interval of
approximately 4.5 seconds between steps (9 times 0.5 seconds).

After each step, the system displays the four standard registers, and in addition the
contents of PSW (address ODOH in register memory).

NOTE

As explained in chapter 4, the user program can contain calls to the
SDK-51 monitor in order to use the monitor’s I/0 facilities. However,
any Monitor call or other access to addresses in system memory is
treated as one single step in single-step or autostep mode. In other
words, you cannot single step across system memory (higher than
7FFFH); a monitor call will cause single stepping to appear to pause
with display blank while the I/0 operation is completed.

Operating the SDK-51

error.

command for details.

NOTE

As explained in Chapter 4, the monitor routine PRINT STRING
involves accesses to system memory and to user-configurable memory.
The system memory is protected against multiple steps as described in
the note above, but when user-configurable memory is accessed, the
system attempts to resume single-stepping with unpredictable results.
Therefore, the user is cautioned against attempting to single step
through this routine. A system reset must be used to recover from this

NOTE

During autostepping, an attempt to write to an address lower than the
TOP produces a guarded access error and autostepping halts. See TOP

Memory Access Commands

SDK-51 MCS-51

The memory access commands described in this section allow the user to examine
and modify specific bytes and bits in the 8031’s on-chip memory and in on-board
external memory (user-configurable memory, system memory). The memory spaces
accessible to the user are summarized in Table 2-4.

Table 2-4. User-Accessible Memory Spaces

Memory Space Address Range Commands
8031 On-chip 00H - 7FH DBYTE commands.
Data Memory (Contiguous)
8031 On-Chip 80H - OFFH ACC, B, DPTR, PSW, SP,
Register (Not TMO, TM1; RBYTE commands.
Memory contiguous)
8031 On-Chip 00H - 7FH RBIT commands.
Bit- (Contiguous),
Addressable 80H - OF7H
Memory (Not
Contiguous)
User- 0000H - 7FFFH CBYTE commands for program
Configurable (Assigned in memory (below TOP), XBYTE
Memory 8K blocks to commands for external data
Memory 0 (RAM),| memory.
Memory 1 (RAM)
and Memory 2
(ROM)).
UPI AOOOH - AFFFH Reserved for system use.
Controller
Parallel BOOOH - B7FFH Reserved for system use.
1/0
Interface B801H - B80O3H XBYTE commands.
B804H - BFFFH Reserved for system use.
Breakpoint CO00H - DFFFH Reserved for system use.
Memory
Monitor EOOOH - FFFFH CBYTE commands (read-only).

Format Summary

To display memory contents, use one of the two following formats:

(1) keyword-reference

(2) memory-type partition

2-20

SDK-51 MCS-51 Operating the SDK-51

To set (change) memory contents (where allowed by the type of memory), use one of
the four following formats:
(1) keyword-reference = byte
(2) memory-type partition = byte
(3) memory-type address = byte, [, [cr] byte ...
(4) CBYTE partition = CBYTE address
Where: keyword-reference means one of the register names listed in Table 2-5.

byte is any two-digit hexadecimal number (three digits if leading zero
required).

memory-type means one of the following keywords:

CBYTE Program memory
DBYTE On-chip data memory
RBYTE On-chip register memory
XBYTE External memory

RBIT Bit-addressable memory

partition is a block of addresses entered as address TO address.

address is a hexadecimal number up to four digits (five with leading
Zero).

cr means an intermediate carriage return. When entering a list of
bytes (format 3 above), you can continue the list to the next display
line by pressing RETURN after the comma; the system begins the
next line with the next available address. See Example 4-1 (chapter 4)
for an example of the continuation feature.

NOTE

Format 4 copies a block of program memory from one partition to
another. See User Program Memory for details.

Table 2-5. Keywords for 8051 Registers

Keyword Description
ACC Accumulator
B Multiplication/Division
DPTR Data Pointer (16 bits)
PC Program counter (16 bits)
PSW Program Status Word
SP Stack Pointer
TMO Timer 0 (16 bits)
T™M1 Timer 1 (16 bits)

On-Chip Data Memory

Figure 2-2 shows a diagram of the 8031’s on-chip data RAM. On-chip data
addresses are in the range from 00H through 7FH.

There are four banks of general purpose registers (addresses 00H through 1FH).

The stack pointer is initialized (at power up or reset) to address 07H in RAM. The
stack pointer is incremented before each stack write (PUSH), so the first stack write
would be to address 08H. To display the address pointed to by the stack pointer,
enter:

SP
To change the stack pointer address, the format is:

SP = byte

2-21

Operating the SDK-51 SDK-51 MCS-51

2-22

Note that the value of byte must be an address in data RAM that leaves room for
the stack such that SP never exceeds 7FH maximum.

To display the content of one or more addresses in on-chip data memory, the format
is:

DBYTE partition

RAM
BYTE

(MSB) (LSB)

7FH

30H

2FH 7F 7E 7D 7C 7B 7A 79 78

2EH 77 76 75 74 73 72 7 70

2DH 6F 6E 6D 6C 6B 6A 69 68

2CH 67 66 65 64 63 62 61 60

2BH 5F 5E 5D 5C 5B 5A 59 58

2AH 57 56 55 54 53 52 51 50

29H 4F 4E 4D 4C 4B 4A 49 48

28H 47 46 45 44 43 42 41 40 BIT-ADDRESSABLE
BYTES
27H 3F 3E 3D 3C 3B 3A 39 38
26H 37 36 35 34 33 32 31 30
25H 2F 2E 2D 2C 2B 2A 29 28
24H 27 26 25 24 23 22 21 20
23H 1F 1E 1D iCc 1B 1A 19 18
22H 17 16 15 14 13 12 1 10
21H OF OE oD oC 0B 0A 09 08
20H 07 06 05 04 03 02 01 00
1FH
BANK 3
18H
17H
BANK 2
10H
OFH
BANK 1
08H
o7H < STACK POINTER
BANK 0
00H

0033

Figure 2-2. On-Chip Data Memory

SDK-51 MCS-51 Operating the SDK-51

Examples:
DBYTE 0

This command displays a single byte.
DBYTE 0 TO 10

This command displays seventeen bytes, in groups of four (maximum). When this
command is entered, the system puts the first four bytes on the display and
identifies the address of the first of the four bytes. The bytes are separated by
commas. To indicate that there are more bytes to follow, the system flashes the
final comma on the line. Press RETURN to obtain the next four bytes. The last byte
(address 10H in this example) does not have a comma.

To fill one or more addresses in data RAM with a single value, the format is:
DBYTE partition = byte

For example, to change a single address:
DBYTE 5 = 55

To clear all of on-chip memory (that is, to fill a partition with the same value, zero
in this example):

DBYTEO TO 7F = 0
To enter a list of values into data memory, the format is:

DBYTE address = byte [, [cr] byte] ...

Example:
DBYTE 30 = 0,1,2,3,4,5

This command sets addresses 30H through 35H with the six bytes in the list. With
this type of command, the length of the partition affected is determined by the
number of bytes in the list.

When you use a list of bytes to set memory (with DBYTE, RBYTE,
RBIT, or XBYTE), you can only specify the starting address. You
cannot specify a partition of addresses (address TO address) and a list
of bytes in the same command, or an error results.

The continuation feature allows you to enter a long list of bytes without repeating
the DBYTE keyword. When you near the end of the display line, enter RETURN
after the last comma in the line. The system begins the next line with DBYT xxxx=,
then the prompt; xxxx is the address where the next byte will be placed. You can
continue as many lines as necessary to enter all the bytes in the list. After the last
byte has been entered, press RETURN to terminate the command. (See Example 4-1
in chapter 4 for an example of the continuation feature.)

Special Function Registers
8031 special function register addresses are in the range from 80H through 0FFH,
but the registers do not fill the entire address space. Table 2-6 shows the addresses

and interpretations of the 8031 registers.

To display the contents of any register in this space, the format is:

RBYTE address

2-23

Operating the SDK-51

2-24

Table 2-6. Register Addresses

Register

Address (Hex) Meaning
80H Port O
81H Stack Pointer
82H Data Pointer, Low Byte
83H Data Pointer, High Byte
88H Timer Control
89H Timer Mode
8AH Timer 0, Low Byte
8BH Timer 1, Low Byte
8CH Timer 0, High Byte
8DH Timer 1, High Byte
90H Port 1
98H Serial Port Control
99H Serial Port Buffer
AOH Port 2
A8H Interrupt Enable
BOH Port 3
B8H Interrupt Priority
DOH Program Status Word
EOH Accumulator
FOH Multiplication Register

For example, to display the value of the accumulator:
RBYTE OEO

The address for RBYTE must be one of the valid register addresses. If you try to
read a non-assigned address, a byte of undefined data is returned.

NOTE

The non-assigned addresses in register memory are reserved in the
SDK-51 for system use. If you try to write to a non-assigned address, the
data is lost, and system operation may be adversely affected.

To change the contents of any of the registers (as bytes), the format is:
RBYTE address = byte

For example, to write the ASCII character A to the accumulator, the command is:

RBYTE OEO = 41

NOTE

Port 3 is partly reserved for system use. All 8 bits of port 3 are displayed,
but bits 2, 6, and 7 are set to ones by the system when beginning
execution or single-step.

In addition to the RBYTE commands, the keyword references in Table 2-5 can be
used to display and change register memory. For example, to display the (16 bit)
data pointer:

DPTR

SDK-51 MCS-51

SDK-51 MCS-51 Operating the SDK-51

To set the data pointer, the format is:

DPTR = address
For example, to set the pointer to location 0100H:

DPTR = 100

The keyword references DPTR, TMO0, and TM1 allow you to access these registers
as 16-bit quantities directly, rather than a byte at a time (as required when using
RBYTE). It should be noted that the values in the timer registers (TMO0O and TM1)
may not reflect the settings of the timers at the moment of exit from execution
mode. The monitor commands that stop the timers allow up to 500 microseconds
execution time following the occurence of a break condition.

NOTE

When port 1 or the non-reserved pins of port 3 are changed from the
console, the pins are not set until the next user program execution
begins. Port 0, port 2, and pins 2, 6, and 7 of port 3 are reserved for
system use.

Bit-Addressable Memory

Portions of the on-chip data and special function register memories are bit-
addressable. Bit addresses 00H through 7FH are in data memory, as shown in
Figure 2-2; bit addresses in the range 80H through F7H refer to individual bits of
registers in register memory, (Table 2-7).

Table 2-7. Bit Addresses in Register Memory

Hex

Address Meaning
80H Port 0, Bit 0
81H Port 0, Bit 1
82H Port 0, Bit 2
83H Port O, Bit 3
84H Port 0, Bit 4
85H Port 0, Bit 5
86H Port 0, Bit 6
87H Port 0, Bit 7
88H Timer O Interrupt, Type Control B
89H Timer O Interrupt, Edge Flag
8AH Timer 1 Interrupt, Type Control Bit
8BH Timer 1 Interrupt, Edge Flag
8CH Timer 0 Run Control Bit
8DH Timer 0 Overflow Flag
8EH Timer 1 Run Control Bit
8FH Timer 1 Overflow Flag
90H Port 1, Bit 0
91H Port 1, Bit 1
92H Port 1, Bit 2
93H Port 1, Bit 3
94H Port 1, Bit 4
95H Port 1, Bit 5
96H Port 1, Bit 6
97H Port 1, Bit 7
98H Receive Interrupt Flag
99H Transmit Interrupt Flag
9AH Receive Bit 8
9BH Transmit Bit 8

9CH Receiver Enable

9DH Serial Mode Control Bit 2
SEH Serial Mode Control Bit 1
9FH Serial Mode Control Bit 0

2-25

Operating the SDK-51 SDK-51 MCS-51

Table 2-7. Bit Addresses in Register Memory (Continued)

Hex

Address Meaning
AOH Port 2, Bit 0
A1H Port 2, Bit 1
A2H Port 2, Bit 2
A3H Port 2, Bit 3
A4H Port 2, Bit 4
A5H Port 2, Bit 5
ABH Port 2, Bit 6
A7TH Port 2, Bit 7
A8H Enable External Interrupt O .
A9H Enable Timer O Interrupt
AAH Enable External Interrupt 1
ABH Enable Timer 1 Interrupt
ACH Enable Serial Port Interrupt
AFH Enable All Interrupts
BOH Serial Port Receive Pin

B1H Serial Port Transmit Pin

B2H Interrupt 0 Input Pin
B3H Interrupt 1 Input Pin

B4H Timer/Counter 0 External Flag
B5H Timer/Counter 1 External Flag
B6H Write Data (For External Memory)
B7H Read Data (For External Memory)
B8H Priority of External Interrupt O
B9H Priority of Timer O Interrupt
BAH Priority of External Interrupt 1
BBH Priority of Timer 1 Interrupt
BCH Priority of Serial Interrupt
DOH Parity Flag
D2H Overflag Flag
D3H Register Bank Select Bit 0
D4H Register Bank Select Bit 1
D5H Flag 0

D6H Auxiiary Carry Flag

D7H Carry Flag

EOH Accumulator, Bit 0

E1H Accumulator, Bit 1

E2H Accumulator, Bit 2

E3H Accumulator, Bit 3

E4H Accumulator, Bit 4

ESH Accumulator, Bit 5

E6H Accumulator, Bit 6

E7H Accumulator, Bit 7

FOH Multiplication Register, Bit 0
F1H Multiplication Register, Bit 1
F2H Multiplication Register, Bit 2 -
F3H Multiplication Register, Bit 3
F4H Multiplication Register, Bit 4
F5H Multiplication Register, Bit 5
F6H Multiplication Register, Bit 6
F7H Multiplication Register, Bit 7

To display the content of any of these bits, the format is:
RBIT address

To change the content of one of these bits:

RBIT address = bit

2-26

SDK-51 MCS-51 Operating the SDK-51

Where bit is 0 or 1 (or any hexadecimal number; the system uses the least
significant bit of the number).

For example, to display the carry flag:
RBIT 0D7
Display: RBIT 00D7=00

The display has a leading zero (00 = bit value zero, 01 = bit value one).

To clear the carry flag from the console:
RBIT 0D7 = 0

To enter a list of bit values into bit-addressable memory, the format is:
RBIT address = bit [, [cr] bit] ...

Example:
RBIT 30 = 0,1,1,0,0,1

This command sets bit addresses 30H through 35H with the six bit values in the
list. With this type of command, the length of the partition affected is determined
by the number of bit values in the list.

NOTE

When you use a list of values to set memory (with DBYTE, RBYTE,
RBIT, CBYTE, or XBYTE), you can only specify the starting address;
you cannot enter a partition (address TO address), since this form is
used only to fill memory with a single value. You cannot combine a
partition of addresses with a list of values in the same command, or an
error results.

The continuation feature allows you to enter a long list of bits without repeating the
RBIT keyword. When you near the end of the display line, enter RETURN after the
last comma in the line. The system begins the next line with RBIT xxxx=, then the
prompt; xxxx is the address where the next byte will be placed. You can continue as
many lines as necessary to enter all the bytes in the list. After the last byte has been
entered, press RETURN to terminate the command. (See Example 4-1 in chapter 4
for an example of the continuation feature.)

User Program Memory

User-configurable memory is external to the 8031, in logical addresses 0000H
through 7FFFH. Not all this address space may have physical memory installed.
User-configurable memory contains the user program and external data space.

Program memory is accessed during program execution by the address in the
program counter and the PSEN/ signal from the microprocessor. The user can
write protect the program memory space with the TOP command (discussed in this
chapter).

To display the program counter, the command is:
PC

To change the program counter to a new address:
PC = address

To display the content of program memory (using the PSEN/ line), the format is:
CBYTE partition

2-27

Operating the SDK-51 SDK-51 MCS-51

For example, to display the bytes from addresses 10H through 20H:
CBYTE 10 TO 20

The bytes are displayed four per line; press RETURN to see the next line.

To fill a partition of program memory with the same value:
CBYTE partition = byte

NOTE

When memory is changed with a CBYTE command, the system
performs a read-after-write verify. If the value read back does not agree
with the value written, an error results.

For example, to clear the partition displayed earlier:
CBYTE 10 TO 20 = 0

To enter a list of opcode and operands as hexadecimal values:
CBYTE address = byte [, [cr] byte] ...

For example, to load the instruction LCALL E006H numerically starting at address
100H:

CB 100 = 12,0E0,06

The three bytes are loaded into three consecutive addresses (100H, 101H, 102H).

The continuation feature allows you to enter a long list of bytes without repeating
the CBYTE keyword. When you near the end of the display line, enter RETURN
after the last comma in the line. The system begins the next line with CBYT xxxx=,
then the prompt; xxxx is the address where the next byte will be placed. You can
continue as many lines as necessary to enter all the bytes in the list. After the last
byte has been entered, press RETURN to terminate the command. (See Example 4-1
in Chapter 4 for an example of the continuation feature.)

To copy a block of bytes from one place in program memory to another, the format
1s:

CBYTE partition = CBYTE address

For Example:

CB 100 TO 1FF = CB 300

This command copies 256 bytes from addresses 300H through 3FFH into addresses
100H through 1FFH. The contents of 300H through 3FFH are not changed.

See the ASM instruction in the next section for an alternative way to load
instructions into program memory.

External Data Memory

External data memory is accessed with the MOVX instructions; the RD/ and WR/
lines from the 8031 control the operation. For external data memory access, the
command formats are the same but the keyword is XBYTE rather than CBYTE.
The XBYTE command uses the RD/ and WR/ to access external data memory.

External data memory command format summary:
Display:
XBYTE partition

2-28

SDK-51 MCS-51 Operating the SDK-51

Fill:
XBYTE partition = byte
Load list of bytes:
XBYTE address = byte [, [cr] byte] ...

The continuation feature allows you to enter a long list of bytes without repeating
the XBYTE keyword. When you near the end of the display line, enter RETURN
after the last comma in the line. The system begins the next line with XBYT xxxx=,
then the prompt; xxxx is the address where the next byte will be placed. You can
continue as many lines as necessary to enter all the bytes in the list. After the last
byte has been entered, press RETURN to terminate the command. (See Example 4-1
in chapter 4 for an example of the continuation feature.)

System Monitor ROM

The user may read the contents of the system monitor with the following type of
command:

CBYTE partition

ASM Command

Function

The ASM command assembles a single instruction mnemonic into program
memory. The assembler mode is entered from interrogation mode when the ASM
command is executed. In assembler mode, the system maintains an assembly
pointer to indicate the address where the next instruction is to begin.

Format

ASM ORG address
ASM

Operation

The ASM command begins assembler mode at the address specified after the ORG
keyword. If no ORG address is specified, the current assembly pointer location is
used; the assembly pointer is initially at 0000H.

The monitor displays the pointer address followed by the assembler mode prompt.
The user then enters an 8051 instruction mnemonic with operands in hexadecimal;
terminate each instruction by pressing the RETURN key. The opcode of each
instruction is stored in the ORG address and operand bytes (if any) are stored in
subsequent addresses. The assembly pointer is then updated to point to the next
available memory location and the new address is displayed.

The user may then enter another instruction, or press RETURN after the prompt to
exit assembler mode.

If the user enters an invalid instruction, a syntax error message is displayed. Press
the RETURN key to clear the error and return to interrogate mode. The assembly
pointer is not changed by the error.

To exit from assembler mode back to interrogation mode, press RETURN
immediately after the prompt.

2-29

Operating the SDK-51 SDK-51 MCS-51

Certain restrictions are placed on the type of instructions that may be entered in
this mode. Operands must be hexadecimal; expressions are not allowed. Symbols,
labels, the generic CALL and the generic JMP instructions are not allowed. AJMP
addresses can only be absolute (numeric values) and JMP is allowed only in the
form “JMP @A+DPTR”. The $ symbol for the current program counter is not
allowed.

Please refer to the MCS™-51 Microcontroller Family User’s Manual for details on
the 8051 instruction set.

Example:

Enter assembler mode and assemble an instruction

Entry ASM ORG 0010
Response 0010 -
Entry MOV A,@R0

Response 0011 -

The user begins assembly mode with an ORG address of 0010H. The system
displays the ORG address followed by the assembly mode prompt. The user enters a
MOV instruction for assembly. The monitor assembles the instruction, stores the
object code in program memory starting at address 0010H, then displays the next
available address in program memory (0011H).

DASM Command
Function

The DASM command allows the user to disassemble memory values into 8051
instruction mnemonics.

Format
DASM partition

Operation

The DASM command displays the content of user-configurable memory (addresses
0000H through 7FFFH), and of the Monitor (EO00H through FFFFH) as
disassembled instructions; other addresses return undefined instructions. The
system assumes that the beginning address of the partition is the first byte of an
instruction, and it completes an instruction if the first byte of the instruction is
within the partition. No assembler mode prompt is displayed with the disassembly
command. The specific partition of code is disassembled and the monitor returns to
the interrogation mode. NUTE

If you request the disassembly of the undefined opcode, A5H, the DASM
command aborts the display of any remaining instructions in the
partition and displays an error message. Press ESC or both RESET
keys to clear the error. Also, the operand @DPTR is abbreviated in the
display to @DPT.

Example:
To disassemble a single instruction (at address 0100H):
DASM 100

To disassemble the several instructions that are in the partition from 1010H
through 1025H:

DASM 1010 TO 1025

2-30

SDK-51 MCS-51 . Operating the SDK-51

Top of Program Memory Command

Function

The top of program memory command (TOP) identifies the highest address in
program memory. Once this address has been set, all memory locations below that
address are protected from writes during the execution of the user program. Any
attempt to write in this space during program execution causes a guarded access
break.

The TOP command can also be used to display the top of memory address.
Format

TOP

TOP = address

Operation

The user may write-protect the memory containing the user program, to prevent the
program from changing any instructions by mistake. The write-protection offered
is contiguous starting with address 0000H. However, the write protection does not
prevent the system from writing addresses 03H, 04H, and 05H.

For write protection, user-configurable memory is arbitrarily divided into 256-byte
blocks. The user specifies the top of program memory at any address from 0000H to
7FFFH. The top of memory value is determined from the specified address in the
following manner:

1. If the user specifies a TOP value is equal to zero, all memory space between
0000H and 7FFFH is treated as external data memory. Writes and reads are
permitted; no errors are generated.

If the user specifies a TOP value between 0001H and 7FFFH, the top of
program memory is set to the highest address within the 256-byte block in
which the selected address falls.

3. If the user specifies a TOP value greater than 7FFFH, an error message is
displayed and the TOP value remains unchanged from its previous value.

o

Note that the user specified value for top of program memory is written to the top of
program memory comparators just prior to entering the execution mode. The user
will thus be able to examine and modify all addresses while in interrogation mode.

NOTE

On a normal data break (write to data address), instruction halts after
the instruction that caused the break. The program counter points to the
instruction immediately following the address that caused the data
break, and the CAUSE command displays DATA BREAK. However,
after a break due only to guarded access (no data break enabled), one
more instruction is executed after the one that caused the guarded
access. Thus the program counter does not point to the next instruction
after the one that caused the break. The extra instruction does not affect
the write protection, which is guaranteed by the hardware.

Furthermore, if a data breakpoint is set on a write-protected address,
and the program breaks on that address, no extra instruction is
executed (program counter points to the next instruction after the one
that caused the break), but the CAUSE display after the break shows a
guarded access break, not a data break.

Default

Initially and after reset, TOP = 0; no user-configurable memory is write-protected,
no guarded access errors are generated.

2-31

Operating the SDK-51 SDK-51 MCS-51

Examples:
Example 1: Set top of program memory.

TOP = 1F10

the user enters top of program memory address 1F10H. Monitor sets actual top of
program memory to highest address in 256-byte memory block, which is 1IFFFH.

Example 2: Display top of program memory

TOP
Display: TOP = 1FFF

Actual top of program memory is displayed.

Input/Output Operations

Figure 2-3 shows the locations of the serial I/0 interface, the audio cassette I/O
interface, and the parallel I/0 interface. Serial I/O and audio cassette 1/0
operations are discussed in the remainder of this chapter. Parallel I/0O operations
involve the user program; see chapter 4 for the discussion of parallel I/0

operations.
SERIAL 1/0
INTERFACE
* H

il EIFY
[F556600)_° S098ssest., |n @
B (S ——]

Chsil

.[000666000°

29902200

R
ot R ol
I
HE{@ :
18988183158 o i
bologo @
; 323
<o i BR B L
gpassiirs g OO0 1l AUDIO
oy : i CASSETTE
8 5 Be £ 1/0
35 S ind INTERFACE
% $ e
T TR 480
¢ BN ©
* . '38383835855555 * R
o,
Y 00 900 00 Q@ 00 00 OO0 00 9 o 00 ks 0.9 0,9 2.0,
_/J ©o 06 oo ©o 0% oo 06 0o 00 00 00 0O du oo 0o
2
“'O OHO [elge] O‘O foe} 0 0 0.0 [e]Ne) o 0 ’)’O 00 00 g) (n) «)n() 00 ()“O "
O 0’6 oo oo oo oo 0o oo oo oo oo oo o 6% d'o oo o
B 0. 00 ©0 00 00 00 00 GO 00 00 00 00 00 00 ©o0 o0
o0 oo oo oo oo oo 0o 0o oo ouv ocuv oo & oo o0 o0
2.9 00 ©00 00 00 00 00 00 QO VO 00 o] 00 00 00
00 o0 00 0o [ole] 00 [ole] oo 20 OO 0o o G o 00 [ele] oo
2.9 2.2 %0 2.2 2.9 00 ©00 00
00 00 00 00 06 oo oo oo
* * # & *
i 2-3. 170 1 f L i 0934
Figure 2-3. nterface Locations

2-32

SDK-51 MCS-51 Operating the SDK-51

1/0 Object Code Format

The object code generated and accepted by the development system assembler and
by the SDK-51 is a series of data records in hexadecimal format terminated with an
end of file record and CTRL Z character (Figure 2-4). The SDK uses much the same
format for audio cassette I/0O operations, except that the data is in binary instead
of hexadecimal, the final CTRL Z is omitted, and a file number record is added as
the first record.

The format of each data record is as follows (one frame is four bits; two frames
equal one byte):

Field 0: Record mark (frame 0 is always a colon :)

Field 1: Record length (frames 1 and 2; the length of the data field in bytes)

Field 2: Start-of-load address (frames 3, 4, 5, and 6; the data bytes are loaded
into consecutive memory addresses starting with this address)

r——RECORD MARK
RECORD LENGTH

FILE NUMBER
RECORD TYPE
| [————CHECKSUM
00000002F F~— FILE NUMBER RECORD (CASSETTE FILES ONLY)

——RECORD MARK
RECORD LENGTH
START OF LOAD ADDRESS

RECORD TYPE
DATA
1 l CHECKSUM————

:;OOOOOOOFAFFF?FBFFFFFSH FOFOFEF1FOF2F282FB
:10001000FOF 3F 1F5F9F7FFF8F7F7FDF7FFFCF7F77B DATA RECORDS
:0D002000F 1FDF2FCFOF7FCFFF7FDFFFFF9A9Q

RECORD MARK
RECORD LENGTH

START-OF-EXECUTION ADDRESS
RECORD TYPE
———CHECKSUM

:00000001FF<——END-OF-FILE RECORD
ZA<—CONTROL Z FOR ISIS-Il SYSTEM

0035

Figure 2-4. 1/0 Object File in Hexadecimal Format

Field 3: Record type 00 (frames 7 and 8)

Field 4: Data (frames 9 through N; a record can contain a maximum of
sixteen bytes, thus N is always less than or equal to forty)

Field 5: Checksum (frames N+1 and N+2; the data is summed byte by byte,
and the least significant byte is taken as the checksum)

The end of file record has the following format:

Field 0: Record mark (frame 0)
Field 1: Record length 00 (frames 1 and 2)

Field 2: Start-of-execution address (frames 3, 4, 5, and 6); after a DOWN-
LOAD from the development system or LOAD from cassette, the
SDK-51 program counter is set to this address.

Field 3: Record type 01 (frames 7 and 8)
Field 4: Checksum (frames 9 and 10)

2-33

Operating the SDK-51 SDK-51 MCS-51

The file number record (cassette files only) has the following format:
Field 0: Record mark (frame 0)
Field 1: Record length 00 (frames 1 and 2)
Field 2: File number (frames 3, 4, 5, and 6)
Field 3: Record type 02 (frames 7 and 8)
Field 4: Checksum (frames 9 and 10)

Serial 1/0 Interface Operations

The following procedures and commands allow the user to send and receive data
through the on-board serial I/0 interface.

The SDK-51 provides a number of options for serial [/O communications with
external peripherals such as a computer terminal, printer, teletypewriter or
development system.

1. Either RS232 or 20 mA current loop interface is allowed.

2. Either the on-board 8251 (U29) USART or the 8051 internal UART can be
selected for serial data transmission.

NOTE

For serial /0 operations, +12-volt and -12-volt power supplies must be
connected to the board. On the power cable, the BLUE wire connects to
the +12V terminal and the YELLOW wire connects to the -12V terminal.
Both remaining BLACK wires connect to 12 volt return.

Jumper Installation

Sheet 8 of the schematic drawings shows the jumper terminals that allow routing of
the various serial I/0 interface lines to serial I/0 interface connector J8. Jumpers
W1 and W2 select between the on-board 8251A and the 8031 on-chip UARTS;
jumpers W3 through W11 select among RS-232 (slave mode), RS-232 (master mode),
and current loop protocols. Tables showing the required jumper settings are given
where appropriate to the UPLOAD, DOWNLOAD, and LIST procedures later in
this chapter. Jumper settings applicable to the use of the 8031 on-chip UART
appear where applicable in chapter 4.

NOTE

Use of the 8031 on-chip UART requires the user program to interface to
the SDK hardware. Please refer to Chapter 4 for details. The discussion
in chapter 2 for the most part assumes the use of the on-board 8251A.

Serial 170 Interface Cable

Serial [/0 data is transmitted to and from the SDK-51 through connector J8. J8
accepts a male, 25-pin, delta type connector. Refer to Table 2-8 for details on the J8
pinout.

2-34

SDK-51 MCS-51

Table 2-8. Serial I/0 Connector J8

Pin Signal

J8-1 Not used

Jg-2 RS-232 TRANSMITTED DATA

J8-3 RS-232 RECEIVED DATA

J8-4 RS-232 REQUEST TO SEND

J8-5 RS-232 CLEAR TO SEND

J8-6 Not used

J8-7 GROUND

J8-8 Not used

J8-9 Not used

J8-10 Not used

J8-11 Not used

J8-12 CURRENT LOOP RECEIVED DATA (+)
J8-13 CURRENT LOOP TRANSMITTED DATA (+)
J8-14 Not used

J8-15 Not used

J8-16 Not used

Jg8-17 Not used

J8-18 Not used

J8-19 Not used

J8-20 Not used

J8-21 Not used

J8-22 Not used

J8-23 Not used

J8-24 CURRENT LOOP RECEIVED DATA (-)

J8-25 CURRENT LOOP TRANSMITTED DATA (-)

Serial 1/0 Baud Rate

The timer in the 8155-2 (U64) provides a baud clock for the 8251 (U29) serial 1/0
interface device. The BAUD command discussed in the next section sets the baud
rate of the 8155 timer.

The 8031 supplies the baud clock for its internal UART. Refer to Chapter 4 for

details on programming the 8031 internal baud rate.

Baud Command

Function

The BAUD command allows the user to set the baud rate of data transfer through
the serial I/O port. The command also allows the current baud rate to be displayed.

Format
110
300
600
BAUD = 1200
2400
4800
9600
BAUD
Operation

The BAUD command causes the timer in the 8155-2 parallel I/0O interface to be set
to produce a timing signal (BAUDCLK) for the 8251 serial I1/0 interface at the
selected baud rate. In order for this function to operate as specified, the UPI-41A
must operate with the 6 MHz crystal supplied with the kit.

Operating the SDK-51

Operating the SDK-51

2-36

Default

Initially and after reset, the serial [/O data rate is set to 2400 baud.

Examples:

Example 1: Set baud rate.

BAUD = 600
Baud rate is set to 600.

Example 2: Display current baud rate.

BAUD

Display: BAUD = 600

Current baud rate setting of 600 is displayed.

Deveiopment System Interface

SDK-51 MCS-51

The SDK-51 can be interfaced to an Intel development system through the serial
I/0 port, allowing user programs to be uploaded and downloaded from the SDK-51.
For this application, the SDK-51’s serial I1/0 port should be jumpered to use the
8251 serial I/0 interface and the RS-232 (slave mode) interface protocol (see Table

2-9).

Table 2-9. Serial 1/0 Jumpers for UPLOAD and DOWNLOAD

NOTE

To ensure proper SDK-51 operation, remove the connection between the
SKD and the development system before turning the development
system power on or off. If the SDK appears to halt after a development
system power on/off, press the RESET keys to restore operation.

Jumper Connection

Wi1 open

W2 W2A - W2B

w3 open

w4 open

W5 W5A - W5B

W6 W6A - W6B

W7 W7A - W8BA

W8 WB8A - W7A

W9 open

W10 W10B - W11B*

W11 W11B - W10B*
*NOTE: Alternately, connecting W10A - W10B and W11A to W11B allows normal operation
of RTS/ and CTS/ when external handshake is required.

Table 2-8 shows the requirements for an interface cable to be connected between J8
of the SDK-51 and the development system. For Series II (and later) development
systems, the interface cable must be connected to the development system’s Serial
Channel 1. For Model 800 development systems, the interface cable must be
connected to the development system’s RS232 CRT port; the development system’s
console must in this case be connected to the development system’s TTY port.

The UPLOAD and DOWNLOAD commands, combined with the development
system’s COPY command, control the data transfer as described in the next

section.

SDK-51 MCS-51 Operating the SDK-51

UPLOAD Command

Function

The UPLOAD command copies programs and data from the SDK-51 user-
configurable memory to a disk file, using the development system file utility (COPY
command).

Format

UPLOAD partition

Operation

The UPLLOAD command transfers a memory partition from the SDK-51 to a file
through the development system. The partition may include any address within the
range 0000H through 7FFFH. The first address in the partition is stored as the
start-of-load address in the file.

NOTE

The UPLOAD operation clears LIST mode to RESET.

The upload procedure is as follows:
1. Enter a command with the following format on the development system
keyboard:
COPY :TlI: TO :Fx:filename
NOTE: Model 800 users substitute :VI: for :TI:.

The entry :Fx:filename specifies the destination drive and file name. (Make
sure the disk containing the file is mounted on the drive before entering the
COPY command.)

Set the SDK-51 program counter to the start of execution address desired for
the program.

3. Enter the SDK-51 command:
UPLOAD

4. The SDK-51 displays the message:
LOADING

e

When the transfer of data is complete, the development system and the SDK-51
both return a command prompt.

Example:

Upload a program from locations 2000H through 2800H in SDK user-configurable
memory to a development system disk file named PROG.HEX.
1. Development System Entry:
COPY :TIl: TO :F1:PROG.HEX
NOTE: Model 800 users substitute :VI: for :TI..
2. SDK-51 Entry:
UPLOAD 2000 TO 2800

2-37

Operating the SDK-51 SDK-51 MCS-51

3. SDK-51 Response
LOADING

DOWNLOAD Command

Function

The DOWNLOAD command transfers a file from the development system to a
partition of memory locations in the SDK-51 user-configurable memory within the
address range 0000H through 7FFFH. The download operation uses the start-of-
load address in the file to determine the first address in the partition; the number of
byvtes of data in the file determines the length of the partition affected by the
download.

Format

DOWNLOAD

Operation

The download procedure is as follows:

1. Enter the DOWNLOAD command on the SDK.
2. The SDK-51 responds with the following message:
LOADING
3. Enter the following command on the development system:
COPY :Fx:filename TO :TO:
NOTE: Model 800 users substitute :VO: for :TO:.

The entry :Fx:filename gives the drive and file name containing the program to
be downloaded. (Make sure the disk containing the file is mounted in the drive
before entering the COPY command.)

When transfer of data is complete, the development system and the SDK-51 both
return a command prompt.

The DOWNLOAD command sets the SDK-51 program counter to the start-of-
execution address in the file.

Example:

Download a program from development system to SDK-51.
1. SDK-51 Entry
DOWNLOAD
2. SDK-51 Response
LOADING
3. Development System Entry
COPY :F1: PROG.HEX TO :TO:
NOTE: Model 800 users substitute :VO: for :TO:.

Code stored in development system under filename PROG.HEX is transferred
to SDK-51. Check the 8051 program counter, register PC, for the starting
address of the downloaded program.

2-38

SDK-51 MCS-51 Operating the SDK-51

LIST Command

Function

The LIST command causes any data being displayed on the SDK-51 display to be
transmitted through the serial [/0 port to an external I/0 device such as a printer.
This feature permits the user to obtain hard copy of data being displayed. To use
the LLIST command, the 8251 serial [/O interface and either RS-232 (master mode)
or current loop protocol must be jumper selected (see Tables 2-10 and 2-11).

Format
LIST = ON
LIST = RESET
LIST

Table 2-10. Serial I/0 Jumpers for LIST Using RS-232 Protocol

Jumper Connection

W1 open

W2 W2A - W2B

w3 open

w4 open

W5 W5A - WBA and W5B - W6EB

W6 W6A - W5A and W6B - W5B

W7 W7A - WBA

w8 WB8A - W7A

W9 open

W10 W10B - W11B*

W11 W11B - W10B*
*NOTE: Alternatively, connecting W10A - W10B and W11A - W11B allows normal
operation of RTS/ and CTS/ if external handshake is required.

Table 2-11. Serial I/0 Jumpers for LIST Using Current Loop

Jumper Connection
W1 open
W2 W2A - W2B
W3 WB3A - W3B
W4 W4A - W4B
W5 open
W6 open
w7 open
W8 WB8A - WOA
W9 WOA - WBA
W10 open
W11 open

Operation

Enabling the list operation (LIST = ON) alters the speed of the display. Normally
the byte values are read out on the display one line at a time, so the user can
examine each byte. When the list function is enabled, data is displayed
continuously at the selected baud rate.

To disable the list function, enter LIST = RESET.

To display the list status (ON/RESET), type LIST.

NOTE

The UPLOAD operation clears the LIST mode to RESET.

Operating the SDK-51

2-40

Default

Initially and after reset, LIST = RESET (no listing is performed).

Examples:

To list a partition of user-configurable memory through the serial I/O port:
LIST = ON
CBYTE 2000 TO 2800

The bytes of data are flashed on the display and sent to the serial I/0 port at the
selected baud rate without pausing at the end of each line. (If desired, use the ESC
key to halt the transfer.)

To list the output of autostepping mode:

LIST = ON
STEP FROM 100, 2

After each instruction executed in autostep mode (see STEP command), the system
displays the program counter and other registers. With LIST on, the displays are
sent to the list device as a form of non-real-time trace.

To disable the list function:
LIST = RESET
To display the state of the list function:

Entry LIST
Response LIST = RESE

The state of the list function is displayed; in this case it is reset (note screen
abbreviation).

Audio Cassette Interface

To connect an audio cassette recorder/player to the SDK-51, use the following
procedure (refer to Figure 2-5):

MICROPHONE PLUG Es2
% | I § }
AUX =L ——Q Es3

AUDIO
CASSETTE
RECORDER

EARPHONE PLUG JfO ESS
EARPHONE :’ c_—_(| 94 =

NOTE:

Connecting both the microphone plug and the earphone plug

may introduce noise into the data transmission. Simultaneous
is

not 0036

Figure 2-5. Audio Cassette Interface Connections

SDK-51 MCS-51

SDK-51 MCS-51 Operating the SDK-51

1. Select two leads (preferably shielded) with jacks that fit your cassette recorder.
Strip the shielding from the leads to expose the signal and ground wires.

2. Connect the microphone lead to E52 (signal wire) and E53 (ground wire).
3. Connect the earphone lead to E55 (signal wire) and E54 (ground wire).

NOTE

On some recorders, connecting both the microphone plug and the
earphone plug may introduce noise into the data transmission.
Simultaneous connection is therefore not recommended.

SAVE Command

Function

The SAVE command copies the data in a partition of user-configurable memory to
a file on the audio cassette tape.

Format

SAVE file-number, partition

Where: The file number must be entered as hexadecimal digits, up to
four, or five if leading zero is required (e.g., 5 for file number 5,
7510 for file number 7510, OF7 for file number F7, OFF30 for file
number FF30)

partition is a block of addresses in the range from 0000H
through 7FFFH.

Operation

The SAVE command copies a partition of SDK-51 user-configurable memory to the
cassette interface. The procedure is as follows:

1. Connect the microphone lead to the microphone or auxiliary input on the
recorder.

e

Place a tape cassette on the recorder, and position the tape to the point where
the file is to be recorded.

3. If your recorder has manual record level adjustment, set the record volume
level to midpoint (on some recorders, the record volume is adjusted
automatically, not manually).

4. Set the SDK-51 program counter to the start of execution address desired for
the file.

5. On the SDK-51, enter the SAVE command. After you press RETURN to enter
the command, the system displays the message:

START CASSETTE
6. Start the cassette recorder in RECORD mode.

7. Press the RETURN key again on the SDK-51. The display is blank while the
transfer takes place.

%. When the partition has been transferred to tape, the system displays the
prompt. Stop the recorder and disconnect the microphone lead.

NOTE

During a cassette operation, the system does not scan either the
kevboard or the display. To abort the transfer, press both RESET keys

2-41

Operating the SDK-51 SDK-51 MCS-51

The svstem saves the partition as a single output file, with file number record, data
records, and end-of-file record as discussed earlier in this chapter (see /O Object
('ode Format). The data is stored as binary tone pulses (see chapter 3 for details on
data encoding). The SAVE command uses the program counter setting as the start-
of-execution address in the end-of-file record.

Example

Transfer a program in addresses 100H through 3FFH to a file numbered 05 on
cassette, using PC = 100 as the start-of-execution address.

Entry: PC =100

Entry: SAVE 05, 100 TO 3FF
Response: START CASSETTE
Entry; Press RETURN key again

LOAD Command

The LOAD command copies data from the designated file on cassette to the SDK-51
user-configurable memory, using the start-of-load address in the file to determine
the beginning of the memory partition. The LOAD command can also be used to
search for file numbers on the tape.

Format

LOAD file-number
LOAD

The file number must be entered as hexadecimal digits, up to four, or up to five if
leading zero is required (e.g., 05 for file number 5, 7510 for file number 7510, OF7 for
file number F7, OFF30 for file number FF30)

Operation

To load a file (program) from file to user-configurable memory, the procedure is as
follows:

Connect the earphone plug to the earphone or monitor output on the recorder.
2. Place the cassette containing the file on the recorder.

3. Adjust the cassette volume by starting the cassette, watching the red LED on
the SDK-51 near the cassette I/O connectors, and setting the recorder volume
control so that the LED just begins to flicker on and off. Some trial and error
may be required to obtain good results with a given recorder.

NOTE

If the signal level from the recorder is too high, noise errors are
introduced into the data.
Position the tape ahead of the file to be read.

5. Enter the LOAD command with the desired file number. When you press
RETURN to enter the command, the system displays the message:

START CASSETTE
6. Start the recorder in PLAY or FORWARD mode.

2-42

SDK-51 MCS-51 Operating the SDK-51

7. Immediately press the RETURN key again (must occur before the recorder
encounters the start of the file). The system enters cassette transfer mode and
blanks the display while the transfer is taking place.

8. The system reads the tape until it locates the specified file number, then stores
the data records in the partition of addresses that begins with the start-of-load
address in the file. The transfer ends when the end-of-file record is read, and the
system displays the message:

LOADED FILE file-number
9. Stop and rewind the tape, and disconnect the earphone plug.
10. Press the RETURN key again to obtain the prompt.

The LOAD operation sets the SDK-51 program counter to the start-of-execution
address on the file.

Example:

Transfer data from file 05 on cassette to user-configurable memory on the SDK-51.

Entry: LOAD 05

Response: START CASSETTE

Entry: Start tape, press RETURN
key again

Response: LOADED FILE 0005

Entry: Stop tape, press RETURN
key again.

To search for the number of the next file on the cassette tape, enter the LOAD
command without a file number, then start the tape. The tape is read forward until
the next file number record is found, then the number of that file is displayed:

FIRST FILE FOUND = file-number

To display the next file number after the one displayed, you must type LOAD
again. Stop the tape if files are short.

For example, suppose file 0006 is the next file on the tape.

Entry: LOAD
Start tape forward.
Response: FIRST FILE FOUND = 0006

Summary of Command Formats

This section gives the formats of all the SDK-51 commands in alphabetical order.

ABR = partition [, partition] ...
ASM [ORG address]
B [= byte]

M N

110
300
600
BAUD |= < 1200
2400
4800
. \ee00/ _]

2-43

Operating the SDK-51 SDK-51 MCS-51

BR = partition [, partition] ...
BR = RESET

BR

CAUSE

CBYTE address = byte [, [cr] byte] ...
CBYTE partition [= byte]

CBYTE partition = CBYTE address
DASM partition

DBYTE partition [= byte]

DBYTE address = byte [, [cr] byte] ...
DOWNLOAD

DPTR [= address]

FOREVER
I

GO [FROM address] Ltt Ei?ERAM

TILL PROGRAM OR DATA
LIST = ON
LIST = RESET
LIST
LOAD ([file-number]
PC [= address)]
PSW [= byte]

RBIT partition [= bit]

RBIT address = bit [, [cr] bit] ...
RBYTE partition [= byte]

RBYTE address = byte [, [cr] byte] ...
SAVE file-number, partition

SP [= byte]

STEP [FROM address] [, memory-type address] [, decimal-digit]
TMO [= address]

TM1 [= address]

TOP [= address]

UPLOAD partition

XBYTE partition [= byte]

XBYTE address = byte [, [cr] byte] ...

2-44

CHAPTER 3
FUNCTIONAL DESCRIPTION

Introduction

This chapter describes the internal operation of the SDK-51 in terms of the
integrated circuit devices and control signals used in the design. The description of
the circuitry is at the block diagram level; a detailed block diagram (Figure 3-6)
accompanies this chapter on a convenient fold-out page. In addition, you may wish
to compare the discussion to the SDK-51 schematics furnished with the kit.

The circuit blocks and functions discussed are:

® Microcontroller

e Memory Mapping

o Address Bus Control

e Data Bus Control

o User-Configurable Memory (Memory Configuration, RAM, and ROM)
e Monitor

o Reset Operation

e 6 MHz Clock Generator

e Parallel I/0 Interface

e UPI Control

e Keyboard and Display Timing Generation

e Keyboard Control

e Display Control

e Serial I/0 Interface

o Audio Cassette Interface

e Top of Program (T.0O.P.) Memory Protect Circuit
e Breakpoint Control

A glossary of the main signal lines in the SDK-51 is given at the end of the chapter.

Microcontroller

Detailed information on the Intel 8051 microcontroller appears in the MCS-51
User’s Guide (see Preface for reference), and is not repeated here. Several points
regarding the use of the 8051 in the SDK-51 should be noted.

e The controller device supplied with the SDK-51 is the 8031 version (no on-chip

ROM).
NOTE

In this chapter, references to the 8051 family in general use “8051;
references to the SDK-51 controller in particular use “8031”.

e A 12-MHz crystal controlled oscillator provides the fundamental clock
frequency for the 8031 microcontroller. Internally, this clock signal provides
timing for internal controller operations and for the ALE, PSEN/, WR/, and
RD/ signals generated by the 8031 to control the operation of various circuits
in the SDK-51.

3-1

Functional Description SDK-51 MCS-51

3-2

e The 8051 has two external interrupt lines, INTO and INT1. The SDK-51
reserves INTO exclusively for system operation, and assigns it highest priority.
The user can place a jumper to allow the INTR switch on the keyboard to
trigger the 8031’s INT1 input. The user must supply the interrupt processing
code (see Chapter 4 for details and limitations).

e The SDK-51 provides a power-on reset, causing the system to display a sign-on
message as soon as power is applied. It also has two RESET switches; pressing
the two switches simultaneously resets the system, including the 8031
(pressing just one switch has no effect). The RESET signal to the 8031
controller causes it to clear all internal registers (the stack pointer is reset to
07H, and ports 1 and 3 are reset to FFH), and to fetch address 0000H in system
memory (see Reset Operation later in this chapter for details on reset handling
involving the microcontroller and monitor ROM).

e Multiplexed address and data appears at I/0 port pins P00 through P07 and
P20 through P27 of the 8031. The parallel I/0 interface (8155) on the SDK-51
has on-chip demultiplexing capabilities; the multiplexed address/data bus is
thus connected directly to the parallel 1/0 interface block. The RAM, ROM,
UPI controller, monitor ROM, and breakpoint logic require separate address
and data buses; the address and data bus control sections demultiplex and
decode the address and data buses for these devices.

e /0 port pins P10 through P16 from the 8031 can be used to operate the
auxiliary keypad, or as an interface to user-designed circuitry. These
operations require user programming (refer to Chapter 4 for details).

e The 8051 has an internal serial I/O port (UART). The SDK-51 monitor does not
use this port. However, the SDK-51 may be jumpered to connect the 8031 serial
I/0 port with the serial I/0 section on the board. User code is required to
operate the on-chip UART; refer to Chapter 4 for details.

e The monitor provides facilities for reading and writing the 8051’s internal
RAM and hardware registers (see Chapter 2)

e The EA/ pin from the 8031 is tied to ground on the SDK-51 board.
Memory Mapping

The 8051 microcontroller can address two independent 64K memory spaces,
external data memory and external program memory. The SDK-51 design offers a
single 64K byte address space to be used for both program memory and data
memory. The upper half of the address space (addresses 8000H through FFFFH) is
reserved the monitor program and for interfacing the microcontroller with system
functions. The lower half (addresses 0000H through 7FFFH) is the user-
configurable memory space; it provides general purpose storage for user programs
and data. Table 3-1 gives some details on the SDK-51 memory map.

Table 3-1. Memory Mapping

Address Memory Block Assignment
0000H -1FFFH User-configurable 8K
2000H - 3FFFH User-configurable 8K
4000H -5FFFH User-configurable 8K
6000H - 7FFFH User-configurable 8K
8000H -9FFFH System memory, not used.
AOOOH - AFFFH UPI controller, 4K
BOOOH - BFFFH Parallel 1/0 interface, 4K
COOOH - CFFFH Lower half of breakpoint RAM, 4K
DOOOH - DFFFH Upper half of breakpoint RAM, 4K
EOOOH - EFFFH Monitor ROM 0, 4K
FOOOH - FFFFH Monitor ROM 1, 4K

SDK-51 MCS-51 Functional Description

Address Bus Control

Eight-bit latches U8 and Ul7 demultiplex the address/data bus lines from the
microcontroller. U8 and U17 latch the 16 address bits on the trailing edge of ALE
(high-to-low transition).

Address decoder U38 decodes address lines A12 through A15 to produce six device
select lines: UPISEL/, IOSEL/, LOBRKMEMSEL/, HIBRKMEMSEL/, MON-
LLOSEL/, and MONHISEL/. Table 3-2 gives details on these select lines. (Compare
to Table 3-1.)

Table 3-2. Address Decoder Select Lines

Hexadecimal Device Select Device Selected
Value on A12 - A15 Line Pulled Low

AH UPISEL/ UPI Controller
BH I0SEL/ Parallel 1/0 Interface
CH LOBRKMEMSEL/ Breakpoint RAM, low 4K
DH HIBRKMEMSEL/ Breakpoint RAM, high 4K
EH MONLOSEL/ Monitor ROM, low 4K
FH MONHISEL/ Monitor ROM, high 4K

Data Bus Control

The data bus control area contains two circuits:
Memory read and write
FORCENOP circuit

The RDBRKMEM/ circuit is an additional input to the data bus; this circuit is
described in the section on Breakpoint control.

Memory Read and Write

The device at U65 is an 8-bit bidirectional bus driver that transmits data between
the controller and data bus lines DB0 through DB7. The WR/ line (T input to U65)
determines the direction of data flow through U65: during WR/ low (T = 0), data
flows from the controller to the data bus; during WR/ high (T = 1), data flows from
the data bus to the controller.

The OE/ input to U65 enables the device. This input is pulled low (enabled) during
each read or write cycle, except when the controller is communicating with the
parallel I/0 interface (i.e., when IOSEL/ is active) or when the FORCENOP signal
is active. When IOSEL/ = 0, the OE/ input is pulled high, inhibiting data transfer
through U65.

FORCENOP Circuit

U42 is a unidirectional bus driver. Since all of U42’s eight inputs are zeros, the
circuit puts a NOP instruction (opcode 00H) on the data bus. This action is required
by the breakpoint logic (see Breakpoint Control later in this chapter).

User Configurable Memory

The user configurable memory is the lower 32K bytes of system external memory,
as shown in the memory map in Table 3-1. The user configurable memory area is
divided into four address spaces of 8192 bytes (8K) each. Each of these address

3-3

Functional Description SDK-51 MCS-51

spaces may be filled either with RAM devices or with ROM devices, but the two
types may not be mixed in a given address space. Printed circuitry is provided on
the SDK board for two 8K blocks of RAM (memory 0 and memory 1) and one 8K
block of ROM (memory 2). To make use of the remaining 8K of addressable memory
space, the user must install memory devices either in the prototype area or off-
board.

Memory Configuration

Address decoder U67, gate U72, and the jumper matrix W20 through W35 assign
the three 8K on-board memory blocks to three out of the four 8K address spaces in
the memory map.

Memory configuration jumpers W20 through W35 are used to assign address
ranges to the three 8K memory blocks on-board. Lines MEMOSEL/, MEM1SEL/,
and MEM2SEL/ select memory 0 (RAM), memory 1 (RAM), and memory 2 (ROM),
respectively. Jumpers across these lines select address space 0000H to 1FFFH,
2000H to 3FFFH, 4000H to 5FFFH, or 6000H to 7FFFH; a given address space may
be assigned to one and only one memory block. Figure 3-1 shows an example of
memory configuration. In this example, address range 0000H to 1FFFH is assigned
to memory 0, address space 2000H to 3FFFH is assigned to memory 2, and address
space 4000H to 5FFFH is assigned to memory 1. Address space 6000H to 7TFFFH is
unassigned.

Address decoder U67 decodes the two address bits A13 and A14 to its four output
lines: YO (designating address range 0000H - 1FFFH), Y1 (2000H - 3FFFH), Y2,
(4000H - 5FFFH), or Y3 (6000H - 7TFFFH). Address line A15 enables U67. Output YO
is gated through U72 to allow reset signal RESETLCH/ to inhibit access to user-
configurable memory addresses 0000H - 1IFFFH during a reset operation (see the
Reset Operation section later in this chapter).

The breakpoint logic allows program breakpoints to be established in one 8K block
of user configurable memory. The jumper on the BRKPTSEL/ line determines the
address space to which breakpoints can apply. In the example in Figure 3-1,
breakpoints are assigned to the address range 0000H to 1IFFFH, corresponding to
memory 0’s addresses.

RAM

1024 bytes (1K) of RAM is supplied with the SDK-51; additional RAM can be added
in 1K units to fill the 16K of RAM positions available on the board.

One RAM address decoder is required for each 8K RAM block: U26 for block 0 and
U51 for block 1. U26 is provided with the kit. MEMOSEL/ enables U26 and
MEMISEL/ enables U51. When enabled, the RAM decoders decode the three
address lines A10, Al11, and A12, enabling one of the eight 1K RAM segments in the
8K block. Each 1K segment consists of two 4096-bit (1Kx4) RAM devices (2114).
Address lines A0 through A9 address the selected 1K of memory. The RAMWR/
line applied to the WE/ input on each device selects the read (high) or write (low)
operation.

ROM

Up to 8K bytes of ROM can be installed in the user configurable ROM space
(Memory 2) using two 4K ROM devices, up to 6K with 2K ROMs, or up to 3K with
1K ROMs. When jumpered by the user for the type of ROM being used, ROM jumper
block U68 and decoder U67 decode the MEM2SEL/ memory select line and address
lines A10, Al1, and A12 to enable the appropriate ROM chip.

3-4

SDK-51 MCS-51 Functional Description

74L8139

—3>| A Y3
Al4

—>»|B UET ¥2 Oy
A15

—_— 3| G Y1 o———

Yo

741832

RESETLCH/
(0000H-1FFFH

INHIBIT)

BRKPTSEL/

MEM2SEL/

MEM1SEL/

MEMOSEL/

MMTMaA~oo0o0o
MMTMTW~00ON
MTTMO~oco0os
MMMN~ocoo®

‘ADDRESS RANGE]| 0037

Figure 3-1. Memory Configuration Jumpers

Address lines AQ through A9 (A0 through A10 for 2K devices, A0 through Al1 for
4K devices) select the byte to be read from the enabled ROM.

Jumper socket U68 allows jumper wires to be installed as required for the type of
ROM devices used. Table 3-3 shows the required jumper configurations and maxi-
mum crystal frequencies for five different types of ROMs.

Table 3-3. ROM Jumper Configuration Chart

ROM/PROM: 3636 3628A 2716-1 2758 2732A
FROM _TO FROM _TO FROM TO FROM TO FROM TO

110 1 9 110 1 9 110
2 13 2 11 2 7 2 M 2 7
3 1 3 12 3 1 3 12 3 13
4 12 4 10 4 12 4 10 4 1
5 78 5 7.8 5 — 5 — 5 —
6 9 6 13 6 89 6 78 6 8912
14 — 14— 14 13 14 13 14—

MAXIMUM 12 MHz 12 MHz 10 MHz 8 MHz 12 MHz

CRYSTAL

FREQUENCY

3-5

Functional Description SDK-51 MCS-51

Monitor

The monitor program is located in ROM in the upper 8K of the 64K external
memory space (addresses EOOOH to FFFFH). Address decoder U38 receives address
lines A12 through A15, pulling the MONLOSEL/ line low when the ExxxH address
range is selected, and pulling MONHISEL/ low when the FxxxH address range is
selected. A low on MONLOSEL/ enables ROM Ub9, while a low on MONHISEL/
enables ROM U60. Address lines A0 through Al1 select the address within ROM to
be read.

Reset Operation

A reset operation occurs at power on or when the two RESET keys on the keyboard
are pressed simultaneously (pressing just one key has no effect). The RESET circuit
generates two momentary signals, RESET and RESET/, and a latched status line,
RESETLCH/.

On the SDK-51, the EA/ pin from the 8031 is tied to ground, causing external
memory to be accessed. Upon a system reset, the 8031 microcontroller automatically
attempts to access external memory location 0000H for its first instruction. During
a reset, however, latch U83 in the Reset circuit pulls the RESETLCH/ line low.
RESETLCH/ has two effects on memory selection: it disables accesses to user-
configurable memory addresses 0000H through 1FFFH (through gate U72 in the
Memory Configuration area), and it enables Monitor ROM 0 (U59). Thus, the first
address read by the controller at reset is actually EOOOH in the Monitor rather than
physical address 0000H.

The first instruction the monitor executes is a-long jump instruction that moves the
program counter to its actual address in high memory. Following this jump, the
monitor performs a write to breakpoint memory; this sets the WRBRKMEM/ line
low, which in turn pulls the RESETLCH/ line high. RESETLCH/ high allows
normal access to the low 8K of user configurable memory.

(Other effects of RESET, RESET/, and RESETLCH/ are discussed in the sections
to which they apply. For RESET, see Microcontroller, Parallel I/O Control, Serial
I/0 Control, and Breakpoint Control. For RESET/, see UPI Controller and
Keyboard and Display Timing Generation. For RESETLCH/, see UPI Control and
Breakpoint Control.)

6 MHz Clock Generator

The 6 MHz crystal Y2 drives an oscillator circuit to provide clock signals UPICLK
and UPICLK/ for the UPI controller. Counter U40 divides UPICLK by 3 to
generate SYSCLK, a 2 MHz timing signal for the Serial I/O Interface.

Parallel 1/0 Interface

A single Intel 8155-2 256-byte RAM with I/0 ports and timer (U64) controls the
parallel I/0 ports. This device provides two general purpose 8-bit L/O ports and one
6-bit port that can be used either as a general purpose I/0O port or as a status
register to be operated in handshake mode.

The 8031 controller uses address range BOOOH through BFFFH to address the
parallel I/0 interface. When address lines A12 through A15 contain the value 0BH,
address decoder U38 pulls the IOSEL/ line low, enabling U64 (see Address Bus
Control earlier in this chapter). Address line A11 selects the mode of operation of

3-6

SDK-51 MCS-51 Functional Description

U64 by toggling the [0/M input to U64. When All is low, U64 operates as a
memory device; when All is high, U64 operates as an I/0 controller.

NOTE

The memory space in the 8155 parallel I/O interface has been assigned
to the monitor. Any attempt to access this space through a user program
may interfere with the monitor’s operation, causing a system
malfunction.

When the I/0 mode has been selected, address lines A0, A1, and A2 select the type
of I/0 operation to be performed. U64 receives this command information from the
microcontroller (lines P00 through P02), and demultiplexes the address and data
signals on these lines, using the ALE, RD/ and WR/ signals. On a high-to-low
transition of ALE, U64 reads the address information from the bus to receive its
command (e.g., select I/O port A, select command/status register); when ALE is
low (before the next low-to-high transition) the controller instructs U64 either to
transfer data to the bus (RD/ is low) or to accept data from the bus (WR/ is low).

The 8155 receives SYSCLK from the 6 MHz Clock Generator (the 6SMHz UPICLK is
divided by 3 to obtain the 2 MHz system clock) The timer output from U64 is
BAUDCLK, the baud rate clock for the serial I/O interface. The rate for BAUDCLK
can be selected by the user with a keyboard command (see BAUD command,
Chapter 2).

The RESET signal initializes the 8155’s three I/O ports to the input mode (see Reset
Operation for the origin of the RESET signal). On reset, the BAUDCLK rate is set
to 2400 baud.

Please refer to the Intel Component Data Catalog for details on the operation of the
8155-2.

UPI Control

The UPI control section (U41, U54) performs three functions in the SDK-51: it
controls the input and output of commands and data between the 8031 controller
and certain 1/0 peripheral devices (display, keyboard, serial I/O interface, cassette
1/0 interface); it scans the keyboard and maintains the display; and it provides
control signals to the breakpoint logic and TOP circuit.

The UPI controller is an Intel UPI-41A. This device contains a CPU, a control
program stored in ROM, a scratchpad RAM, three data bus registers, and two 1/0
ports. In addition to the UPI-41A, the UPI Control section includes an 8243 port
expander (U54) to generate several of its outputs. The UPI Control section is
diagrammed in Figure 3-2.

Data and commands are transmitted between the 8031 controller and the UPI
controller through the data bus; control signals UPISEL/, A0, RD/, and WR/ are
also involved in the communication. The UPI also receives timing signals UPICLK
and UPICLK/ from the 6 MHz Clock Generator circuit, and the RESET/ signal
from the Reset area.

The UPI in turn communicates with the peripherals through the UPIBUS, the
DSPLYCLK timing signal, cassette data lines CASSIN and CASOUT, and signal
RDKEYS/. Additional signals generated by or through this section are the TOP
address lines; SSTEPEN/, DATABRKEN, PROGBRKEN and CLRBRK/ for the
breakpoint logic,and UPIOBF for handshaking with the 8031 controller. Several of
these signals are generated through the port expander Ub4 (8243).

3-7

Functional Description

3-8

UPICLK
CASSIN
B
UPISEL, CONTROL
WR/ LOGIC
B
RD/
A0/
_
RESET f
DSPLYCLK
RAM RDKEYS/
| RDKEYS/ o
64 BYTE o
poRT 2 | IPIOBF o TOPO - TOP6
BITS 0 - 3 ——
SSTEPEN/
| SSTEPEN/
______ 243 | DATABRKEN
UPI CONTROL PROGRAM BT SRS 28 N
ROM 4= —— /| expanpER [PROGBRKEN
1K BYTE 4)CASOUT
CLRBRK/
r- - - - -1
| |
| STATUS |
DBO-DB7 REGISTER N
/0
l | PORT 1
INPUT
| BUFFER
! |
|
t oUTPUT |
| BUFFER i
|
| DATA BUS |
Lo o ANTERFACE. 5 0038

Figure 3-2. UPI Control, Block Diagram

The 8031 controller uses the address range AOOOH through AFFFH to address the
UPI (U41). When the 8031 selects this address range (reflected as value 0AH on
address lines A12 through A15), address decoder U38 pulls the UPISEL/ line low,
enabling the UPL

U41 has three externally addressable registers: the input buffer, the output buffer,
and the status register. The 8031 writes both data and UPI controller commands to
the input buffer; it reads data from the output buffer and reads status information
from the status register. Address line A0, and the RD/ and WR/ signals, determine
which of these functions to perform, as shown in Table 3-4. When the 8031 writes a
command to the input buffer, the UPI performs the operation by referencing code in
its internal control ROM. (See the UPI-41A User’s Manual (referenced in the
Preface) for more on the UPI commands.)

Table 3-4. 8031 Interface with UPI Controller

Address WR/ - RD/ | Host Activity

Axx1H 0 1 Write data to input buffer

Axx1H 1 0 Read data from output buffer
Axx0H 0 1 Write UPI command to input buffer
Axx0H 1 0 Read UPI status register

SDK-51 MCS-51

SDK-51 MCS-51 Functional Description

In operation, the 8031 controller issues a command to the UPI controller, indicating
the peripheral device it wishes to access. The 8031 then sends data to or receives
data from the selected device, using the UPI status register and the 8031’s interrupt
logic for handshaking.

1/0 port expander U54 decodes four I/0 port lines from the UPI controller into 15
(out of 16 possible) output lines. Signals TOPO through TOPS6 are used by the Top of
Program Memory Protect area. SSTEPEN/, DATABRKEN, and PROGBRKEN
are used by the Breakpoint logic. An additional breakpoint signal from the 8243,
CLRBRK/, can also be generated by a low on RESETLCH/. CLRBRK/ is used to
clear the breakpoint logic (see Breakpoint Control and Top of Program Memory
Protect Circuit for details on CLRBRK/, and Reset Operation for the origin of
RESETLCH/). The remaining signal, CASOUT, is the serial data line to the
cassette 170 interface.

The RESET/ signal to the UPI controller places the 8041A/8741A in its initial
state, and it begins executing its internal program from the beginning. See Reset
Operation for the origin of RESET/.

Keyboard and Display Timing Generation

Shift registers U80, U81, and U82 strobe the 24 KDTIME lines at a rate of
approximately 60 times a second. At KDTIMEO, a 1 is shifted from the UPIBUS6
line into the A input of U80, pulling the output at Q. high. On each successive
DSPLYCLK cycle, a 0 is shifted into input A, so that the 1 is shifted to each
KDTIME line in turn. On the 25th clock cycle, a 1 is again input. The KDTIME
lines are used to scan the keyboard and the LED display modules as discussed in
the next two sections.

A RESET/ signal from the Reset circuit clears the KDTIME lines so that the
sequence can begin again from KDTIMEQ. See Reset Operation for the origin of
RESET/.

Keyboard Control

Strobe lines KDTIMEO through KDTIME6 scan the columns of the keyboard
matrix, one KDTIME line being active (high) on each clock cycle. The rows of the
matrix, KRO through KR7, are connected through 8-bit buffer U86 to the UPIBUS
lines. The UPI-41A enables U86 to drive KRO through KR7 on the UPIBUS by
pulling the RDKEYS/ line low. Through this system the UPI scans the keyboard
matrix approximately 60 times a second. If the UPI detects the same key closed on
two consecutive sweeps, it transmits the ASCII code for that key position to its
output buffer and sends an interrupt to the host via the UPIOBF line. The UPIOBF
line generates an interrupt over the same line (P32) used by the breakpoint logic;
UPIOBF is also placed on the data bus (DB1) when RDBRKMEM/ goes low.

Display Control

The SDK-51’s 24-character display consists of three 8-character modules, DS1, DS2,
and DS3. Each character is formed by illuminating a pattern of segments on an 18-
segment LED readout. The displayable character set consists of a subset of ASCII
(see Chapter 2 for details).

Converter U2 on the display board translates ASCII code on UPIBUSO through
UPIBUSS into the appropriate combination of segments on display modules DSI,
DS2, and DS3 to create the selected character. The lines KDTIMEO through
KDTIME23 enable the characters one at a time. A low on DSPLYCLK enables the

3-9

Functional Description SDK-51 MCS-51

input to U2 and, through one-shot U5, disables the output. On the rising edge of
DSPLYCLK, the ASCII code on the UPIBUS lines is latched into U2, and U5 is
triggered to enable output from UZ2.

Each character in the display is illuminated 1/24 (about 4%) of the time. The
duration of each KDTIME pulse (equal to the DSPLYCLK high time) is about 700
microseconds. The entire display is refreshed approximately 60 times a second (700
microseconds times 24 equals about 16.8 milliseconds or approximately 1/60 of a
second). To protect the LED readouts, U5 will disable the output if a circuit
malfunction causes one of the LED characters to be selected for more than
approximately 760 microseconds (i.e., DSPLYCLK remains high).

Serial 1/0 Interface

The Intel 8251 A Programmable Communications Interface, U29, controls the serial
170 interface in the SDK-51. U29 operates in an asynchronous mode.

BAUDCLK, the baud rate clock input to the 8251A, is generated by the parallel 1/O
interface device, U64 (the 8155). The baud clock rate is user-selectable from 110 to
9600 baud, as described in chapter 3 (Baud command). Upon reset, the baud rate is
set to 2400 baud.

The SDK-51 includes devices for both standard RS-232 and current loop interfaces.
Jumpers on the board select one or the other interface standard. In addition, the
8031 controller’s serial I/O pins can be jumpered to connect to the RS-232 or current
loop interface.

The UPI controller communicates with U29 through the UPIBUS lines, and in
addition uses port expander U54 to provide inputs to the RD/, WR/, and C/D
inputs on U29. (See the Intel Component Data Catalog for details on the 8251 A and
its command set.

The RESET signal (see Reset Operation) places the 8251A in its initial “idle” state.

Audio Cassette Interface

The audio cassette interface allows the 8031 to read data from or write data to an
audio cassette tape recorder. The 8031 communicates with the cassette interface
through the UPI controller. The user selects the direction of data transfer, and the
UPI performs the serial-to-parallel or parallel-to-serial conversion.

Data to be transmitted to the cassette recorder comes over the CASOUT line from
the UPIL. Data received from the recorder goes to the UPI over the CASSIN line.

The transmitted data is formatted at the byte level, and again at the bit level. At the
byte level, the UPI begins the byte stream with a leader tone approximately 10 bits
in duration. Then it sends a byte of eight data bits followed by another 10-bit leader
tone, repeating leader and data “fields” until all the data has been sent (Figure 3-3).

At the bit level, bits are encoded in the CASOUT signal with a four-part, software
generated data cycle. As diagrammed in Figure 3-4, the four divisions of one bit
time consist of a START period (1/4 bit time), the DATA (middle 2/4 bit time), and a
STOP period (1/4 bit time). The START period always contains a burst of tone; the
STOP period is always “silent” (no tone). The DATA period in the middle half of the
bit time can be a tone (data 1) or silent (data 0).

When the encoded data is read back from the cassette, shaping circuits invert,
filter, and square the tone bursts, creating the CASSIN signal. Figure 3-4 shows the
CASSIN waveform that corresponds to the CASOUT signal in the figure. The UPI

3-10

SDK-51 MCS-51 Functional Description

then decodes the four-part data cycles using a sampling technique, and converts
the serial data to parallel bytes, which can be transmitted to the 8031 over the data
bus.

[

NOTE

The keyboard and display are disabled during cassette operation. The
display is blanked. No keys are detected; in particular, the ESC key is
not recognized.

Please Refef to Audio Cassette Interface in Chapter 2, for details on connecting and
controlling the audio cassette interface.

LEADER DATA LEADER DATA LEADER DATA

10* 8 10 8 10 8 seo

*NOTE: NUMBERS ARE BIT TIMES
0039

Figure 3-3. Cassette Output Byte Stream

€ ONE BIT > ONE BIT - ONE BIT ———————»

STOP
(Always 0)

START
(Always 1) |

I HWMHWH H J o
CASQUT — DATA 0 LEVEL (0V)

CASSIN — DATA 0 LEVEL (+5V)

DATA 0

START ‘ DATA 1 ’ STOP START

DATA 0 STOP

DATA 1 LEVEL (0V)

0040

Figure 3-4. Cassette Interface Waveforms

Top of Program (T.O.P.) Memory Protect Circuit

The user can write-protect a portion of user-configurable memory that contains the
user program, by specifying the address that is the top of program (“T.0.P.”) (see
Chapter 2, Top of Program Memory Command). The write protected segment
always begins with address 0000H, and ends with the T.O.P. address. The TOP0
through TOPG6 signals from the UPI area contain the T.O.P. address set by the user.
U39 and U53 in the T.O.P. circuit compare address lines A8 through Al15 with
TOPO through TOPS6. If the address on the bus is below the top of memory address,
the RAMWR/ line is inhibited from going low (write).

If the user program attempts to write to write-protected memory, the GUARDEDACC
line is latched high. GUARDEDACC generates an interrupt to the 8031 controller
via breakpoint signal P32 (breaking user program execution). A low on the
CLRBRK/ line resets the GUARDEDACC line low; as discussed in the UPI Control
section, CLRBRK/ is generated either by a reset or by command from the 8031 via
the UPI.

3-11

Functional Description SDK-51 MCS-51

Breakpoint Control

The breakpoint logic circuit allows the user to specify addresses in either program
memory or data memory as breakpoint addresses; if the user program accesses a
breakpoint address, the breakpoint logic sends an interrupt to the 8031 controller,
breaking program execution. In addition, the breakpoint logic is used to break
execution after each instruction in single-step. Figure 3-5 shows a simplified
diagram of the breakpoint logic. (See Breakpoint Commands and STEP Command
in Chapter 2.)

U74 latches breakpoint signals PROGBRK (break on program address),
DATABRK (data address), and SSTEP (break after each instruction in single-step).
Gating logic combines these signals to generate the interrupt to the 8031 (P32). U74
also generates the ONECYCLOP signal discussed later in this section.

A12
—>»QICs/

A0 - A1 A DOUT BRKRAMOUT (0 = ADDRESS MATCHES)

— /|BREAK-

POINT
RAM

Y

ADDRSMATCH
BRKPTSEL/

DATAMEM (1 = RD/ OR WR/ ACTIVE)
DATABRKEN

DATABRK

Y

INSCYC (1 = OPCODE ADDRESS VALID)
PROGBRKEN

PROGBRK

A15 (0 = USER-CONFIGURABLE MEMORY)

SSTEP

Y

SSTEPEN/

J U U

0143

Figure 3-5. Breakpoint Logic, Simplified

3-12

SDK-51 MCS-51 Functional Description

Single-Step Breaks

When the SSTEPEN/ line from the UPI is active (low) and address line A15 is also
low (indicating an access to user-configurable memory), a breakpoint interrupt is
generated after every instruction executed. This operation does not involve the
setting of breakpoint RAM. The signal SSTEP through U74 is gated onto signal
P32 (processor INTO input).

Breakpoint RAM

The breakpoint addresses for program breaks and data breaks are represented by a
special breakpoint memory (U61, U62), consisting of one or two 4K x 1 bit RAMs
(2141-5), or 8K bits maximum. (One RAM device is provided with the kit; the other
may be added at the user’s option.) Each bit in breakpoint memory represents a
byte in user-configurable memory (which can be either program or data memory).
The breakpoint memory can be mapped to represent any of the 8K blocks of user-
configurable memory, by setting a jumper on the BRKPTSEL/ line (see Memory
Configuration earlier in this chapter).

The 8031 controller uses addresses CO00H through DFFFH in memory to address
the breakpoint memory. To read or write breakpoint memory, U38 decodes address
lines A12 through A1l5, generating a low either on LOBRKMEMSEL/ (CO00H -
CFFFH) or on HIBRKMEMSEL/ (D0O00H - DFFFH), as described earlier in the
section on Address Bus Control. These two signals are then combined with the RD/
and WR/ lines to create the signals RDBRKMEM/ and WRBRKMEM/. When
WRBRKMEM/ is low, data can be written to breakpoint memory. The breakpoint
address is on lines A0 through A11, and the bit value is on data bus line DBO0: 0 = set
breakpoint, 1 = clear breakpoint.

Breakpoint memory is read each address cycle, except when WRBRKMEM/ is low.
The breakpoint memory outputs the bit value of the current address on
BRKRAMOUT:; a low on BRKRAMOUT indicates an address that has a
breakpoint set on it; this signal is combined with BRKPTSEL/ to generate signal
ADDRSMATCH (since this line is internal to the breakpoint logic, it is not shown
on the functional block diagram).

Data Memory Breaks

For data memory breaks, ADDRSMATCH is combined with DATABRKEN (from
the UPI) and DATAMEM (from the Data Bus Control), to latch the DATABRK
signal high.

The DATABRK signal is pulled high when the following three conditions are all
true at the same time: (1) data memory is being read or written (DATAMEM is
high); (2) breaks on data memory have been enabled (DATABRKEN high); and (3)
the current address matches a breakpoint address (ADDRSMATCH high). The
DATABRK line passes through U74 and generates an interrupt to the host
controller at its P32 (INTO) input.

Program Memory Breaks

For program memory breaks (PROGBRK signal), ADDRSMATCH is combined
with signals PROGBRKEN and INSCYC. PROGBRK is pulled high when the
following three conditions are true at the same time: (1) breaks on program memory
have been enabled; (2) the instruction cycle is valid; and (3) an address match
occurs between the current program memory address and breakpoint memory. The
PROGBRK line from U74 generates an external interrupt to the controller at P32
(INTO).

3-13

Functional Description SDK-51 MCS-51

Instruction Cycle (INSCYC) Circuit

Look-up memory U63 is a ROM that contains a list of the number of bus cycles
required to complete each instruction in the 8051 microcontroller instruction set.
Each time the 8031 receives an instruction from program memory, U64 receives the
instruction through the data bus, looks up the number of bus cycles required to
complete the instruction, and transfers this count to counter U77. The counter then
counts bus cycles (CMD/ low-to-high transition). Upon reaching the loaded count,
U77 pulls the LOADINSCTR/ line low on the next bus cycle. LOADINSCTR/ and
initialization latch U83 are combined to control the INSCYC signal. A high on
INSCYC indicates that the current fetch is the address of the first byte of a valid
instruction.

This circuit is provided to prevent the breakpoint logic from breaking on a memory
fetch that is not a valid instruction. The 8051 always fetches two bytes on every
cycle, even though the two bytes may not be part of the same instruction. If an
opcode is fetched as the second byte of a cycle, therefore, it has not yet been
executed, and thus is invalid as a breakpoint. The lookup ROM and counter assure
that program breaks will only occur when an instruction that matches a breakpoint
address is actually executed, not merely “pre-fetched.”

NOTE

During any interrupt, the INSCYC circuit loses synchronization with
the instructions executed. To resynchronize, a data memory reference is
used to clear the U77 counter (program breaks are inhibited by U83 and
U84 during this fetch). The next instruction fetch starts the counter at
the right point again.

FORCENOP Circuit

The 8031 processor samples interrupt pin INTO (P32) on the falling edge of the
second ALE on any instruction cycle. The processor then delays one Tcyc before
responding to the interrupt. If a “new” instruction begins execution during the one
Teyc delay, that instruction will be completed before the controller responds to the
interrupt. The problem for the breakpoint logic is that this “new” instruction could
affect register or data memory contents, including the program counter.

The solution is to cause the “new” instruction to be a NOP instruction, which only
affects the program counter (PC is decremented to the correct break value by the
Monitor). U74 in the breakpoint logic latches signal ONECYCLOP high to indicate
that the instruction being fetched is a one-cycle instruction and will therefore fall
through to a new instruction prior to servicing the interrupt.

There are three cases:

1.. (PROGBRK or SSTEP) =1, and ONECYCLOP = 0. In this case, the interrupt
occurs at the end of the desired instruction, and all registers are valid.

2. (PROGBRK or SSTEP) = 1, and ONECYCLOP = 1. In this case, the “new”
instruction must be forced to be a NOP. All registers then are valid except the
program counter, which must be decremented by one.

3. DATBRK =1 and ONECYCLOP = 0 or 1 (don’t care). In this case the “new”
instruction must be forced to be a NOP and the program counter must be
decremented by one.

3-14

SDK-51 MCS-51 Functional Description

To force a NOP on the data bus, counter U55 generates a signal FORCENOP under
the cases outlined above. This signal is received by the FORCENOP circuit in the
Data Bus Control area; device U42 is enabled and puts a byte of all zeros on the bus.

Clearing a Break Condition

When the breakpoint logic generates an interrupt, the 8031 controller discontinues
its current processing task to service the interrupt. Upon completion, the monitor
interrupt service routine generates a low on the CLRBRK/ line through the UPI
controller. A low on CLRBRK/ resets the breakpoint signal (SSTEP, DATABRK, or
PROGBRK), clears the interrupt line (P32), and resets FORCENOP counter U55.
CLRBRK/ also resets the GUARDEDACC line from the Top of Memory circuit.

A system reset also clears the breakpoint logic. The RESET signal clears cycle
counter U77 and turns off the INSCYC line. The RESETLCH/ line sets CLRBRK/
active (low) when it is latched low by the Reset circuit (see Reset Operation).

Reading The Cause of the Last Break

Breakpoint signals BRKRAMOUT, GUARDEDACC, PROGBRK, DATABRK,
SSTEP, and ONECYCLOP (also UPI status line UPIOBF and the RESETLCH/
signal) are connected to the data bus so they may be interrogated. The data bit set
uniquely identifies the cause of the last break in program execution (see CAUSE
Command in Chapter 2). Signal RDBRKMEM/ enables unidirectional drivers U69
and U70 to place these signals on the bus (see Table 3-5 for details).

NOTE

During the process of servicing a break, signal CLRBRK/ prevents the
user from reading these values directly with a memory reference command.
However, the CAUSE command (Chapter 2) provides the information.

Table 3-5. Breakpoint Signals on the Data Bus

> Data Bus | Breakpoint Signal
Line

DBO BRKRAMOUT
DB1 UPIOBF

DB2 GUARDEDACC
DB3 PROGBRK
DB4 DATABRK

DB5 SSTEP

DB6 ONECYCLOP
DB7 RESETLCH/

Glossary of Signal Lines

This section contains brief descriptions of the signal lines shown on the SDK-51
schematic drawings or on the block diagram (Figure 3-6). Most of these signals are
discussed in the previous sections of this chapter.

ADDRSMATCH High indicates that breakpoints have been assigned to
the block of user configurable memory being read and
that a breakpoint has been assigned to the address
being accessed.

3-15

Functional Description

3-16

ALE

ANYBRK

A0-Al15

BAUDCLK

BPSEN/

BRKPTSEL/

BRKRAMOUT

CASOUT

CASSIN/

CTS/
CLRBRK/

CMD/

CPU SERIAL DATA

CUR LP RX DATA ()

CUR LP RX DATA (+)

CUR LP TX DATA (+)

CUR LP TX DATA (-)

DATABRK

DATABRKEN/

DATAMEM
DBO-DB7
DSPLYCLK

SDK-51 MCS-51

Address Latch Enable. Demultiplex signal for address/
data lines. When ALE = 1, P00 - P07 contains the low
address bits; when ALE =0, P00 - P07 contains the data
byte. In most cases, the low address byte is latched on
the high-to-low (trailing) edge of ALE, but details of
timing vary with application.

Logical “OR” combination of SSTEP, PROGBRK, and
DATABRK, used by the Breakpoint logic to control the
output of these signals and the FORCENOP signal.

Address bus; high true.

Clock signal from timer in parallel I/0 interface that
sets the baud rate of the serial I/0 interface.

Buffered PSEN/ line.

Low indicates a read from the 8K byte block of user
configurable memory to which the breakpoint logic has
been assigned.

Output of the breakpoint RAM; low indicates that a
breakpoint address has matched an address accessed
by the program.

Serial output from the UPI controller to an audio
cassette recorder.

Serial input data from audio cassette recorder to UPI
controller.

Serial I70 (RS232) interface CLEAR TO SEND signal.

Low resets interrupt circuitry following an interrupt
resulting from a breakpoint or guarded access interrupt.

Control input to breakpoint logic. Signals activation of
BPSEN/, WR/, or RD/.

Serial data received and transmitted, routed from serial
I/0 to CPU for use by customer program (optional).

Serial (TTY) I/0 Interface signal (CURRENT -LOOP
RECEIVED DATA).

Serial (TTY) I/0 interface signal (CURRENT LOOP
RECEIVED DATA).

Serial (TTY) 1/0 interface signal (CURRENT LOOP
TRANSMITTED DATA).

Serial (TTY) I/0 interface signal (CURRENT LOOP
TRANSMITTED DATA).

High indicates breakpoint interrupt on access to data
memory.

Low enables breakpoint logic for accesses to data
memory.

High indicates data memory is being accessed.
Data bus; high true.

Clock signal that UPI controller generates for use in
scanning the keyboard and LED display modules.

SDK-51 MCS-51

EARPHONE

FORCENOP

GUARDEDACC/

HIBRKMEMSEL/

INSCYC

IOSEL/

KDTIMEO - KDTIME23

KRO - KR7

LOADINSCTR/

LOBRKMEMSEL/

MEMOSEL/

MEMISEL/

MEM2SEL/

MICROPHONE INPUT

MONHISEL/
MONLOSEL/
ONECYCLOP

P00-PO7, P20-P27

P10-P17

P30

P31

Functional Description

Audio cassette I/0 input (comes from EARPHONE
output on cassette recorder).

Control input to data bus control from breakpoint logic.
Forces a byte of 0’s on the data bus (U42)

Low indicates a write has been attempted in the write
protected section of memory; causes an interrupt to
occur.

Low selects upper half of breakpoint RAM in order to
write breakpoints.

High indicates valid instruction fetch cycle (used by
Breakpoint logic).

Low selects the parallel 1/0 interface device and
inhibits data bus control.

24 enable lines used to multiplex data to the LED
display modules and to scan the keyboard; high is true.

Low on one of these lines indicates that there is a key
closure on the associated row of the keyboard matrix.

Low indicates that instruction cycle counter in break-
point logic has reached its preset count and is ready for
the next count to be loaded (i.e., next cycle is the
beginning of the next instruction).

Low selects lower half of breakpoint RAM in order to
write breakpoints.

Output from Memory Configuration area, selects
Memory 0 when low.

Output from Memory Configuration area, selects
Memory 1 when low.

Output from Memory Configuration area, selects
Memory 2 when low.

Audio cassette I/0 output (goes to MIC input on
cassette recorder).

Enables high 4K of Monitor ROM when low.
Enables low 4K of Monitor ROM when low.

Control output from breakpoint logic. Indicates a one-
cycle instruction was executing when a breakpoint was
encountered; this forces a NOP on the data bus.

Address/Data ports from 8031 Microcontroller. Ad-
dresses and data are multiplexed through these ports
each bus cycle: address followed by data.

Microcontroller port 1 pins. Can be used to scan
auxiliary keypad or for other optional uses. Requires
user to generate program for the 8031.

Serial data output from microcontroller. Can be used by
customer program.

Serial data input to microcontroller. Can be used by
customer program.

3-17

Functional Description

3-18

P32

P33

PAO-PC5
PROG/ALE

PROGBRK

PROGBRKEN/

PROGMEM

PSEN/

RAMWR/

RD/

RDBRKMEM/

RDKEYS/

RECEIVED DATA

REQUEST TO SEND
RESETLCH/

SERIAL DATA/

SERIAL RD/

SDK-51 MCS-51

Logical “OR” of GUARDEDACC, -UPIOBF, SSTEP,
PROGBRK, and DATABRK sent from breakpoint logic
to INTO input on CPU. (also shown as “INTERRUPT”
on functional block diagram.)

INT1 interrupt input to 8031 microcontroller. Can be
jumpered to connect INTR key to INT 1 input. Can be
jumpered for other use by customer designed circuit.

Output lines from the Parallel 1/O control.

See ALE (PROG applies only to the 8751 version of the
microcontroller family).

High indicates breakpoint interrupt on read from
program memory.

Low enables breakpoint logic for accesses to external
program memory.

High indicates external program memory is being
accessed.

Low indicates 8031 controller is reading from (external)
program memory.

Low enables RAMs for write operation. Logical AND of
WR/ and output of T.O.P. address comparator; low
indicates that address to be written to is above write
protected area.

Low indicates a read from data memory. The line is the
buffered read output from the 8051 Microcontroller.

Low causes BRKRAMOUT, UPIOBF, GUARDEDACC,
ONECYCLOP, PROGBRK, DATABRK, SSTEP and
RESETLCH/ lines to be connected to the data bus so
they can be checked.

Low enables buffer U86 to drive KRO through KR7 from
the keyboard onto the UPIBUS.

Serial I/0 (RS-232) interface signal (Note: The data on
this line is received by the equipment connected to the
line external to the SDK. Internal to the SDK, this line
is TxD, transmitted data. It is shown on the block
diagram as “RX” DATA to emphasize the reversal of
names.

Serial I/0 (RS-232) interface signal. Same as RTS/.

Disables user configurable memory and selects lower
half of monitor ROM when a system reset is initiated.
Assures the program start begins at beginning monitor
address (EQO0H).

Control line from UPI controller to 8251A = 0, UPI bus
contains data for the serial I/0 interface; when 1, bus
contains a command for the 8251A.

Control line from UPI to 8251A serial I/0 control.
When SERIAL RD/ =0, 8251A is enabled to transfer a
byte of data to the line.

SDK-51 MCS-51

SERIAL WR/

SSTEP

SSTEPEN/

SYSCLK

TOPO - TOP6

TRANSMITTED DATA

TTLHI1, TTLHIZ2
UPIBUSO - UPIBUS7

UPICLK, UPICLK/

UPIOBF

UPISEL/
WR/

WRBRKMEM/

Functional Description

Control line from UPI to 8251A serial I/0 control.
When SERIAL WR/ =0, 8251A is enabled to transfer a
byte of data from the line.

High indicates breakpoint interrupt on read to memory
due to single step operation.

Low enables single step function (generates break in
execution after each instruction).

2 MHz timing signal to Parallel I/O and Serial [/O
areas from 6MHz clock generator (through divide by 3
counter).

Contain the uppermost address of the write-protected
portion of user-configurable memory as specified by the
user. Write-protected area starts with address 0000H.

Serial I/0 (RS-232) interface signal. Note: the data on
this line is transmitted by the equipment connected to
the line external to the SDK. Internal to the SDK, this
line is named RxD, Received Data. On the block
diagram, this line is shown as “TX” DATA to emphasize
the reversal in names.

TTL HIGH inputs to integrated circuits.

Lines that transmit data and commands between UPI
controller and the peripherals it controls.

Timing signals from 6MHz clock generator to UPI
controller.

High causes an interrupt (through the breakpoint logic)
to the 8031 microcontroller to request the 8031 to read
the output buffer of the UPI controller.

Low selects UPI controller device.

Low enables a write from the data bus to memory or
1/0. The line is the buffered write output from the 8031
microcontroller.

Low enables write to breakpoint memory; low also
resets RESETLCH/ line to high.

3-19/3-20

SDK-51 MCS-51 Functional Description

8 7 6 | 5 ! 4 | 3 2 | !
o TS PRSCATARY, PRGPERTS fevsons
Sl CobeoRaToN. o CAANG REV | DESCRIPTION [oft [oate | cnk pate | apvo | vaTe
%ﬁ&&f&wﬂ; o (NOTE c)
e] CP0 SERMLOATA)
INTERRUPT - - - - - - - - - - - - = - - - T 7 7 7 A
T
- CPU SIGNALS . RESET \i/
L
KEY _cpy DBY- 0BT WR/ TOP @ -TOPG At D
T.0.P MEMORY SERIAL WR/ RIS ~
RESET DKTA PROTECT e =
B DATAMEM CA\RCUIT CALRBRK/ T e g
TAME! T I
RST INT1 Pa0P3! . CONTROL vy =1 SERIAL DATA/ 5552“ T DY g
P32 UPIBUS - 2
INTG FORCENOP UPTBUS T INTERFACE 3
ALE E & CLKBRK/ (B234A) SR PR
— DATAMEM CURLPRX DRTAC)| =
WR/ CURLPTX DKTARY] 2
Py cMD/ GURRDEDACC] CURLPTX DKTAC é
FORCENOP pp— 11D | @] |
DBG-DBT —— i
ADDRESS DATABRK
Pp-PhT BUS AD-AI2, A5 13 AL UPIOBF
pag_per CONTROL : e BRE NKPOINT SlaB]
(ADDRESS HIBRKMEMSEL / CONTROL SETEREN] S\F:’%ggs g—
LKTCHES, - LOBRKMEMSEL / DATADRBEN
MEMORY MONLOSEL/ PROGBRKEN DISPLRY
DECODE) MONHLSEL / "] ° BRUPTSEL/ . CONTROL
UPISEL /
WRBKMEM /. (NOTE B) C
MICROCONTROLLER IT (TO RESET) SORTROE D
RESETLCH / (B141A/8041A, -
(Bo™) 8243} UPTBIS G £
UPIBUS T Zz B
MONGSEL /. 5
MONASEL / ~ 4
AN g
PAG-PAT MONITOR % UPIBUS &
22 oM * TIMING
=4
I
DQF;(;LLEL 2% GENERATOR
3l 4 DSPLYCLK
INTERFACE 5 F
(815%) §§ DB@-DBT & -
cpy BAUDCLK : MEMORY |« ¢ —A oy M
SYSCLK . : AB_ps2 o) MEM® SEL/ = ?_1
E’— : (RAM) l—b_ RDKEYS/ 58
R 3
RESET - — RESETLCH/
MEMORY < —>
(R;\\ w0 MEM19EL/ RESET KEYBOARD
—_——— . CONTROL B
(NOTE ¢) — = = AD
AUXILIARY MEMORY [7 F
KEYPAD 2 MEM 2SEL/ - .
: __(ROM) E > g
(NOTE B 0 : L e A g]
1 [5] 5 o
pes
- A1B-A1S MEMORY ¢ CASOUT Mic
'
pe CONFIGURATION K CreoiN CASSETTE gg
o
Vi JUMPERS 2 I/0 wb
[W
RESET 2 INTERFACE EARPHONE Wz
(4 PLACEDS) GMHE 2 %3
L0
RESET RESET/ S (2PLACES) cLOCK SYSCLK |€ v
DB@-DB7
RESETLEN] GENERATOR -|uptCiLK
L "2 S (4PLACED) UPICLK/ -
8 B -
WRBRKMEM/ /N JPTSEL
(FROM BREAKPOINT) cltock: j.4
!/ A
NOTES-
A.REFERENCE SCHEMATIC 162072 BY SHEET NUMBER.
B.REFERENCE SCHEMATIC 162075.
C. REQU\RES USER PROGRAMMING.
8 7 6 5 T 4 3 2 T o

Figure 3-6. Breakpoint Logic, Simplified

3-21/3-22

CHAPTER 4
APPLICATIONS

This chapter contains guidelines for writing programs to run on the SDK-51, for
using the on-board parallel I/0 ports and auxiliary keypad, and for expanding the
hardware capability of the board. The information includes:

e Ways to call Monitor utility routines from within the user program

e Special considerations for interrupt routines.

e Using the 8031 on-chip UART (serial 1/0 port)

e Parallel I/0 interfacing

e Using the on-board auxiliary keypad

e Adding circuitry to the breadboard area

e Expanding the SDK-51 memory capacity

Accessing Monitor Utilities

Several of the utility routines in the SDK-51 system monitor program can be called
by the user program. The routines are accessed via a jump table near the beginning
of the monitor. These routines are:

UCI Reads a character from the SDK-51 main keyboard.

CcO Displays a character on the SDK-51 display.

NEWLINE Clears the display (outputs a RETURN to the display).

PRINT_STRING Displays a message on the display.

LSTBYT Displays a byte value on the display.

LSTWRD Displays a two-byte value on the display.

UCSTS Returns console status bit (1 = character is waiting to be
read).

TIME Delays 100 microseconds times the 16-bit value passed to the
routine.

NOTE

Most of the monitor utility routines described in this section affect the
accumulator and registers R2 and R3 in register bank 0. See the SDK-51
Monitor Listing Manual for details.

Console Input (UCI)

Routine UCI reads a character from the main keyboard, and places the ASCII
value (with bit 7 masked to zero) in the accumulator. To call this routine from the
user program, the code is:

LCALL OEOO09H

No other parameters are required. The routine waits until a valid key has been
pressed on the keyboard, then reads the ASCII value from the UPI-41A. Bit 7 is
masked to zero, then the 7-bit value for the key combination is moved into the
accumulator of the 8031. Table 4-1 lists the key combinations and corresponding
ASCII values as returned by the console input routine.

4-1

Applications

Table 4-1. Console Input Values

SDK-51 MCS-51

KEY LABEL KEY ONLY KEY AND KEY AND
SHIFT CONTROL

A 61H 41H 01H

B 62H 42H 02H

C 63H 43H 03H

D 64H 44H 04H

E 65H 45H 05H

F 66H 46H 06H
G 67H 47H 07H

H 68H 48H 08H

| 69H 49H 09H

J BAH 4AH 0AH
K 6BH 4BH 0BH
L 6CH 4CH 0CH
M 6DH 4DH ODH
N 6EH 4EH OEH
o) 6FH 4FH OFH

P 70H 50H 10H
Q 71H 51H 11H

R 72H 52H 12H

S 73H 53H 13H

T 74H 54H 14H

U 75H 55H 15H

v 76H 56H 16H
W 77H 57H 17H

X 78H 58H 18H

Y 79H 59H 19H

z 7AH 5AH 1AH
11 31H 21H 31H
"/2 32H 22H 32H
#/3 33H 23H 33H
$/4 34H 24H 34H
%/5 35H 25H 35H
&/6 36H 26H 36H
7 37H 27H 37H
</8 38H 28H 38H
>/9 39H 29H 39H
\/0 30H 5CH 30H
=/- 2DH 3DH 2DH
@ 40H NONE NONE
+/; 3BH 2BH 3BH
7 3AH 2AH 3AH
I, 2CH 5BH 2CH
1. 2EH 5DH 2EH
2/ 2FH 3FH 2FH
ESC 1BH NONE NONE
TAB 09H NONE NONE
CNTRL N/A N/A N/A
SHIFT N/A N/A N/A
RETURN ODH NONE NONE
RUBOUT 7FH NONE NONE
SPACEBAR 20H NONE NONE

Console Output (CO)

The console output routine takes the 7-bit ASCII byte passed in register R2,
converts it to a six-bit value for the UPIBUS, and displays the corresponding
character on the display. To call this routine from the user program, the sequence

18!

MOV R2,byte
LCALL OE006H

; Immediate, direct, or indirect.

; Calls the monitor routine

The values for the characters are shown in Figure 4-1. The byte passed to R2 can be

immediate data, a direct data address, or an indirect address.

SDK-51 MCS-51

Applications

For example, to display the character X:

MOV R2,#58H
LCALL OEO0O6H

As a more useful example, to clear the display then display the character read in
with the console input routine:

MOV R2, #0DH
LCALL OEO06H
MOV R2, #0AH
LCALL OEOO6H

LCALL OEOO9H
MOV R2 A
LCALL OEOO6H

; Carriage return character.
: Output the return.

: Linefeed character.

; Output the linefeed.

; Inputs keyboard character into ACC.
; Passes character to output routine.
; Outputs character to display.

See NEWLINE in the next section for an easier way to clear the display.

Az Az Ay Ag
_—

2 3

Z
potsl 2
NZ

O ‘Dra -
W -
SN
KN |-
i ul e P 5y

H I
N T
: F
I 4

MR-
MENXT
— >0
ED/\)(I
L0)
L

U\ A~

0042
Figure 4-1. Console Output Values

Clear Display (NEWLINE)

To guarantee that the display is clear before displaying a character, message, or
number, insert a call to the NEWLINE routine as follows:

LCALL OEOOFH
NEWLINE outputs a carriage return and linefeed to the display.

No parameters are required.

Display a Message (PRINT_STRING)

Routine PRINT_STRING displays a message stored as ASCII bytes in external
memory. To use this routine, first load the string into memory. The first byte of the
string must contain the number of characters in the string; the length can be any
value from 00H through OFFH. Figure 4-1 shows the ASCII values to use for the
characters to be displayed.

4-3

Applications SDK-51 MCS-51

To call the routine, move the high byte of the string’s address into R2 and the low
byte of the address into R3, then call the routine. The sequence in general is:

MOV R2,byte ; High byte of string address.
MOV R3,byte : Low byte of string address.
LCALL OEO1EH : Call the routine.

The bytes passed to R2 and R3 can be immediate data, direct data addresses, or
indirect addresses.

For example, suppose we wish to have the user program display the sign-on
message READY (five characters). First, we load the string with that message into
data memory from the console starting at address 300H:

XBY 300 = 5, 52,45,41,44,59

To display this message, the user program contains the following code sequence:

LCALL OEOOFH : Clear the display.

MOV R2,#03H : High byte of string address.
MOV RS3,#00H : Low byte of string address.
LCALL OEO1EH ; Displays the message.

Do not attempt to single step through a call to PRINT_STRING.
Normally, the system hardware treats any access to system memory
(above 7FFFH) as one step, without breaks between instructions. When
PRINT_STRING attempts to read the string (in user-configurable
memory), the hardware tries to resume single-stepping, with unpredic-
table results. To restore proper system operation, press both RESET
keys.

Display a One-Byte Number (LSTBYT)

The LSTBYT routine displays the byte in register R2 as hexadecimal digits (using
ASCII characters). The set-up and call to this routine is:

MOV R2, byte ; Move one-byte value into R2.
LCALL OEO15H ; Call the routine.

The byte passed to R2 can be immediate data, a direct data address, or an indirect
address.

For example, to display the value of the accumulator in hexadecimal:

LCALL OEOOFH ; Clear the display.
MOV R2,A ; Copy the accumulator to R2.
LCALL OEO15H ; Display the value.

Display a Two-Byte Number (LSTWRD)

Routine LSTWRD uses the value in register R2 as the high byte and the value in R3
as the low byte of a 16-bit number, and displays that number in hexadecimal (using
ASCII characters). The call sequence is:

MOV R2, byte ; High byte of number.
MOV R3, byte ; Low byte of number.
LCALL OEO18H ; Call to display routine.

The bytes passed to R2 and R3 can be immediate data, direct data addresses, or
indirect addresses.

4-4

SDK-51 MCS-51

For example, to display the number A123H:

LCALL OEOOFH ; Clear the display.

MOV R2,#0A1H ; High byte.

MOV R3,#23H ; Low byte.

LCALL OEO18H : Display hexadecimal value.

Read Console Status (UCSTS)

The UCSTS routine sets the carry flag to 1 if the UPI has a character waiting to be
read by the 8031, or to 0 if no character is waiting. The call is:

LCALL OEOOCH

No parameters are required.

Time Delay (TIME)

Routine TIME introduces a delay in program execution. The duration of the delay
is 100 microseconds multiplied by the 16-bit parameter passed to the routine in
registers R2 (high byte) and R3 (low byte). The general sequence is:

MOV R2, pyte ;High byte of delay parameter.
MOV R3, byte ;Low byte of delay parameter.
LCALL OEO12H ;Call to delay routine.

The bytes passed to R2 and R3 can be immediate data, direct data address, or
indirect addresses.

For example, to introduce a pause of one second (one million microseconds or ten
thousand times the delay factor of 100 microseconds), the parameter would be
2710H, and the call sequence is:

MOV R2, #27H :High byte.
MOV R3, #10H ;Low byte.
LCALL OEO12H :Call the delay routine.

Interrupt Considerations

Details on interrupt programming for the 8051 microcomputer family are given in
the MCS-51 User’s Guide; the Preface has a complete reference to that manual. The
following considerations apply only to the use of interrupts by the user program on
the SDK-51.

1. External interrupt O is reserved for system use. This interrupt uses location
0003H as its interrupt vector.

The code at locations 0003H, 0004H, and 0005H must be the following
instruction:

LJMP EOO3H

If the user program is RAM, the system will overwrite location 0003H
with the required instruction. If the user program is in PROM or ROM, it
must contain the required instruction for correct system operation. The
user should refrain from executing (with GO or STEP) across this
location.

Applications

4-5

Applications

NOTE

The user program should not use or disable external interrupt 0; both the
EXO0 bit (IE register bit 0) and the EA bit (IE register bit 7) must be 1l at
all times to allow system interrupts (breakpoints, UPI operations,
guarded access) to operate correctly.

All other interrupts may be enabled and used by the user program.

NOTE

For proper breakpoint operation after an interrupt in the user program,
the user program must resynchronize the instruction cycle counter by
reading or writing external data memory (MOVX instruction) early in
the interrupt service routine. The instruction need not affect program
operation; for example, the following sequence “writes” the accumulator
to monitor ROM:

MOV DPTR,#0FFFFH
MOVX @DPTR,A

This sequence resynchronizes the breakpoint logic, affecting only the

DPTR.
NOTE

Since the system uses the interrupt structure to handle breakpoints
(including single stepping), the following restrictions on breaking
within interrupt routines apply:

1. Breakpoints should not be used in high-priority interrupt routines.

9. After breaking in a low-priority interrupt routine, the Interrupt In
Progress flag remains set until cleared by a RETI instruction. For
proper operation, resume execution where it left off in the interrupt
routine, or clear the flag by executing a RETI instruction before
resuming execution at the outer level.

Interrupt Program Example

SDK-51 MCS-51

) In particular, to connect the INTR key on the keyboard to the external
interrupt 1 input (Port 3 pin 3), place a shorting plug across jumper pins W12A-
W12B. The user program must then enable this interrupt and have code at
location 0013H to handle the interrupt (or jump to a service routine higher in
memory).

The SDK-51 breakpoint logic contains hardware to determine when the first
byte of an instruction is being fetched from memory. This information is
necessary for program breakpoint operation. Following an interrupt, however,
this hardware loses synchronization with the instruction fetches.

Example 4-1 contains a short demonstration program for the SDK-51. This
program illustrates the use of interrupt 1, and several of the Monitor calls discussed
earlier in this chapter. The leftmost column shows the address where each
instruction begins. The middle column shows the instruction to be entered in SDK-
51 assembly mode. The rightmost column provides a brief explanation of each
instruction. ;

To enter this program, begin assembler mode at the first address with the
command:

ASM ORG 13

SDK-51 MCS-51 Applications

Then enter the instructions; end each instruction with the RETURN key. The
system displays the new assembly address and prompts you for the next
instruction. If you make a mistake that results in an error message, press RETURN
to clear the error, then enter the ASM command again; the ORG address is not
necessary in this case. If you enter the wrong instruction, press RETURN to enter
interrogate mode, then enter ASM ORG address to enter the correct instruction.

When all instructions have been entered, press RETURN twice to begin interrogate
mode.

Place a shorting plug on jumper W12.

Then enter the command:
GO FROM 2F
to begin executing. The program displays the message WAITING.
Press the INTR key on the keyboard. The interrupt routine displays the character I

for two seconds, then returns to the main program and the WAITING message. To
terminate the program press the ESC key.

Example 4-1. Interrupt Program

Enter the following commands on the SDK-51 to load the sample program.

ASM ORG 13 . Interrupt service routine

0013 MOV DPTR, #8000H ; External data memory access is required to synchronize
0016 MOVX @DPTR, A . breakpoint hardware.

0017 ANL 0A8, #0FBH . Mask out Timer O interrupts
001A LL.CALL OEOOFH ; Call monitor routine NEWLINE to clear the display.
001D MOV R2, #49H ; 49H is the ASCII value for the letter I. The ASCII value is
. loaded into R2 for the CO routine.
001F LCALL OEO0O06H ; Call monitor routine CO to display the character.
0022 MOV R2, #4EH ; Load R2 and R3 with values to determine the time delay of
0024 MOV R3, #20H ; the routine TIME. Value 4320H gives routine TIME. Value

; 4E20H gives a delay of 2 seconds.

0026 LCALL OEO12H Call monitor routine TIME.

0029 SETB 0 ; The main program uses bit address 00H as a flag to

; indicate that an EXT1 interrupt has occurred.
002B ORL 0A8H, #84H . Enable the interrupt that was masked out in line 0017.
002E RETH ; End of interrupt routine. The program returns to the point

; in the main program where it was interrupted.
; Main program, initialization steps.

002F ORL 0A8H, #84H . Enable interrupts. OA8H is the address of the interrupt
; enable (IE) register.
0032 SETB 00H ; Initialize bit in data memory used as interrupt flag.
0034 CLR OD3H ; Select register bank 0 by clearing bits 3 and 4 of the
0036 CLR 0D4H . program status word (PSW).
; Main loop.
0038 JNB 00H, 0038H ; Loops here until bit 00H is set to 1. This flag will be set

; to 1 after initialization (first time through) and after
; returning from the interrupt service routine.

003B LCALL OEOOFH ; Call NEWLINE to clear display.

003E MOV R2, #00H R2 and R3 get the high and low bytes of the address of
0040 MOV R3, #90H the ; message string.

0042 LCALL OEO1EH Call PRINT STRING to display the message.

0045 CLR 00H Clear the flag now that the display is updated.

0047 SJMP 0038H Jump back to the start of the loop.

(Continued on next page)

4-7

Applications SDK-51 MCS-51

4-8

Example 4-1. Interrupt Program (Continued)

Press RETURN twice to exit the assembler mode. Enter the message string with
the following CBYTE commands:

CBYT 90 = 07,57,41,49,54
CBYT 95 = 49,4E,57

To start the program, enter:

GO FROM 2F

8031 On-Chip UART

Details on using the 8031 on-chip serial I/O port are given in the MCS-51 User’s
Manual described in the Preface.

To interface directly to the serial I/0O pins on the 8031, connect to jumpers P30
(Receive Data) and P31 (Transmit Data). Other pins of P3 have functions as
follows:

e P32 is reserved for system use (interrupt 0)

e P33 (interrupt 1) is available to the user.

e P34 is available to the user.

e P35 is available to the user.

e P36 is reserved for system use (WR/)

e P37 is reserved for system use (RD/)

P33, P34, and P35 can have serial I/O functions as described in the MCS-51™
User’s Guide.

On-Board Jumpers
To use the on-chip UART with the serial I/0 interface on the SDK-51, the serial I/0O

jumpers on the board must be configured as shown in Tables 4-2, 4-3, and 4-4,
depending on the transmission protocol.

Table 4-2. Serial 1/0 Jumpers for RS-232, Slave Mode

Jumper Connection

W1 W1A - W1B

w2 open

W3 open

w4 open

W5 W5A - W5B

W6 W6A - W6B

W7 W7B - W8B

W8 : W8B - W7B

W9 open

W10 W10B - W11B*

W11 W11B - w10B*
*NOTE: Alternately, connecting W10A - W10B and W11A - W11B allows normal operation of
RTS/ and CTS/ when external handshake is required.

SDK-51 MCS-51 Applications

Table 4-3. Serial I/0 Jumpers for RS-232, Master Mode

Jumper Connection

W1 W1A - W1B

W2 open

W3 open

w4 open

W5 W5A - WBA and W5B - W6EB

W6 WB6A - W5A and W6B - W5B

w7 W7A - W8A

w8 WB8A - W7A

w9 open

W10 w10B - w11B*

w11 W11B - w10B*
*NOTE: Alternatively, connecting W10A - W10B and W11A - W11B allows normal operation of
RTS/ and CTS/ if external handshake is required.

Table 4-4. Serial 1/0 Jumpers for Current Loop

Jumper Connection
W1 W1A - W1B
w2 open
w3 W3A - W3B
W4 W4A - W4B -
W5 open
W6 open
W7 open
w8 W8B - W9B
W9 W9B - W8B
W10 open
W11 open

Setting Baud Rate

The serial I/0 port on the 8031 uses the auto-reload mode of timer 1 to generate the
serial port baud rate. To set the baud rate, load the reload value in TH1 (hex address
8DH), set the TMOD register (hex address 89H) for auto-reload mode on Timer 1,
and start the timer by setting bit TR1 (hex address 8EH).

The reload values for five baud rates are shown in Table 4-5; the values assume the
12 MHz crystal as supplied in the kit.

Table 4-5. Baud Rate Auto-Reload Values

Hex Value
Baud Rate | for TH1
150 baud | 30H
300 baud | 98H
600 baud | 0CCH
1200 baud | OE6H
2400 baud | OF3H

For example, to set 2400 baud, the code is:

MOV 8DH, #0F3H ; Set reload value in TH1.
; Select auto-reload mode, Timer 1.

MOV 89H, #20H

SETB 8EH ; Start Timer 1

The general formula for computing the reload value is:
TH1 Initial Value = - ((Osc. Clock Rate in Hz)/(384 * Baud Rate))

The unary minus means two’s complementation, the / means integer division, and
the * means multiplication. The value 384 is a decimal constant.

Applications SDK-51 MCS-51

Hexadecimal Addresses

The SDK-51 assembler mode does not accept the symbolic register names used by
ASM-51. For reference, Table 4-6 shows the byte and bit addresses of selected
registers involved in serial I/0O operations.

Table 4-6. Serial 1/0 Register Addresses

Register Byte Bit
Name Address Address
TCON 88H

TMOD 89H

THA1 8DH

SCON 98H

SBUF 99H

P3 BOH

TRA1 8EH
P30 (RXD) BOH
P31 (TXD) B1H

Parallel 1/0 Interfacing

The 8031 has 32 parallel I/0 lines. In the SDK-51, sixteen bits (ports PO and P2) are
used as address/data lines and the use of P3 is restricted by the system use of P32
(IN'T0), P36 (WR/), and P37 (RD/) as control lines. Lines P10 through P17, however,
are available for parallel I/O operations. In addition, the SDK-51 design includes
the 8155 (U64), which provides an additional 22 parallel 1/0 lines arranged into
two 8-bit ports, A and B, and one 6-bit port, PC. Figure 4-2 shows the location of the
pinouts for these two parallel I/0 interfaces on connectors J4 and J5.

Using Port P1

8031 source code is used to program P10 through P17 for read or write (drive)
functions. The lines can be addressed as a byte (hexadecimal address 90H), or as
individual lines (bit addresses 90H through 97H). To configure a line for input,
write a 1 to the line before reading it (OFFH for all lines at once).

For example, to read port 1 as a byte:

ORL 90H, #0FFH ; Configure P1 for input.
MOV A, 90H ; Read P1 into accumulator.

When writing to P1, any instruction that has P1 as the destination may be used; the
operation should preserve the input bits by writing ones to those bits. The user must
execute or single step to have the value written appear on the port pins.

Using the 8155-2

The 8155-2 parallel I/0 interface is addressed as part of the SDK-51 system
memory: addresses BOOOH through BFFFH. Addresses below B800OH access the
8155 on-chip RAM; this space is reserved for system use.

The 8155-2 has three parallel I/O ports A, B, and C. To access these ports, a
command must be sent to the 8155 Command register (address BSOOH) to configure
the ports as input or output. Table 4-7 shows the values to be loaded into the
accumulator for each possible combination of inputs and outputs.

4-10

SDK-51 MCS-51

Applications

Figure 4-2. Parallel 1/0 Interface Connectors

PARALLEL 1/0
PORT 1
FROM 8031

PARALLEL
1/
CONNECTORS
FROM
8155-2

—iE
no

@
RE-
SET
p17
P1E
pIS
P14
0.3
P2
o
10
POoO
POI
P02
P03
P04
POS
POE
PO7
ALE

O0000000000000000000O
0000000000000 000000

oCa

|

w
>
a

% .

&
[e]
MCS 51

SYSTEM DESIGN
uG4

B

0000000000000 000QOOQ

PC3
o]
PCi
PCU
PB7
PBE
PBS
PB4
PB3
PB2
PBI
PBU|
PA7
DA

OQO0OO0O0000000O000O000000

DAY

|

w
w
Ny
o

& 12MHZ XK

UBS

Q
®
@
(o}
o}

0043

Table 4-7. 8155 Command Register Values

Accumulator Port A Port B Port C
00H input input input
01H output input input
02H input output input
03H output output input
0CH input input output
0DH output input output
OEH input output output
OFH output output output

To configure the 8155, the general code sequence is:

MOV A, #nnH ; nnH is the value from Table 4-7.
MOV DPTR, #0B800H ; B80OH is the address of the 8155 command
; register.

MOVX @DPTR, A ; Write to the command register.

4-11

Applications SDK-51 MCS-51

4-12

From the SDK-51 console, the command register can be configured with an XBYTE
command:

XBYTE 0B800H = nnH

For example to set port A for input, and ports B and C for output:
MOV A, #62H MOV DPTR, #0B800H MOVX, @DPTR, A

or, from the console:
XBYTE 0B800 = 62

Ports A, B, and C have addresses shown in Table 4-8.

Table 4-8. Parallel 1/0 Port Addresses

Port Address

Command 0B800OH

Port A 0B801H
Port B 0B802H
Port C 0B803H

Other addresses on the 8155-2
are reserved for system use.

To read a port, the code is:

MOV DPTR, #0B80nH ; Select port address from Table 4-8.
MOVX A, @DPTR ; Read selected port into accumulator.

To read the value from the console and display it on the SDK-51, the command is:

XBYTE 0B80n For example, to read port A:

MOV DPTR, #0B801H; ; Address of port A
MOVX A, @DPTR ; Read byte into accumulator.

The console equivalent is:
XBYTE 0B801
To write to a parallel I/O port, the code sequence is:

MOV A, byte ; Load the value to be output; can be immediate, data,
; direct data address, or indirect address.
MOV DPTR, #B802&H ; Port address from Table 4-8.
MOVX @DPTR, A ; Write selected port.
The console equivalent is:
XBYTE 0B80n = byte
For example, to transmit the value 41H to port B:

MOV A, #41H
MOV DPTR, #0B802H
MOVX @DPTR, A

The console equivalent is:
XBYTE 0B802 = 41

For more details on the 8155 operations, refer to the Intel Component Data Catalog.

SDK-51 MCS-51 Applications

Scanning A 3 x 4 Matrix Keypad

Printed wiring has been provided on the SDK-51 board to allow the seven 80511/0
lines, P10 through P16, to be used to scan a 3 x 4 matrix keypad. The keypad is part
of the SDK-51 keyboard. Install shorting plugs across jumpers W13 through W19 to
connect P10 through P16 to J2, the keyboard connector. Figure 4-3 shows the
hardware connections for the auxiliary keypad.

w13

)

P16 wid (AUXCOL2)

)

P15 (AUXCOL1)

W15

P14

(AUXCOLO) p»—

p

03 13 23
wie Jr—o-r~ lb—oT 1}—0_‘_
P13 m (AUXROW3) i i ?
T T T
w7 [o) [e O
P12 m {AUXROW2) i i ?

01
wis

P11 —‘—m— (AUXROW1)

g
"
!

p—O
p—O

00

¥
k
¥

w139

O

)

(AUXROWO0)

[
L

0044

Figure 4-3. Auxiliary Keypad Hardware Connections

Examples 4-2 and 4-3 show a program that scans the 3 x 4 matrix keypad. Example
4-2 shows the lines as you might enter them using the SDK-51 ASM command; this
figure also provides comments to indicate the program logic. (Note that all numeric
values in Example 4-2 are hexadecimal.) Example 4-3 shows how to enter the
program in hexadecimal with the CBYTE commands, using the continuation
feature.

The scheme used to scan the keypad is as follows. Columns 0 through 2 are
sequentially pulled low by writing a zero to the appropriate bit position of port 1. Bit
4 selects column 0; bit 5 selects column 1; bit 6 selects column 2. A table indexed by
RO contains byte values to be written to port 1 with the column select bits in place.
During each of the time intervals when a column is enabled (low), rows 0 through 3
are checked by reading the corresponding bits of port 1 to see if any one (or more)
has a low value, indicating a key has been pressed. The combination of column
enabled and row sensed low identifies the key pressed. The program displays the
number of any auxiliary key pressed.

The procedure is interrupt driven. Each time an interrupt is generated, the next
column is enabled. The interrupts are generated by internal Timer O on the 8031 at
intervals of about 4 milliseconds. Thus, the entire keypad is scanned approximately
every 12 milliseconds. The delay between scans serves two purposes. First, a key
closure is taken as valid only if the same key is detected on two successive scans, so
the delay acts as a debounce mechanism. Second, since the keypad scans are
infrequent (relative to the instruction cycle time of a few microseconds at most), the
interrupt scheme frees the processor to carry out more important tasks most of the
time with occasional pauses to service the keypad.

The program uses the following registers and memory locations. To incorporate
this program into a larger program, these locations must be saved. One way to save
them is to modify the interrupt service routine to PUSH the values at the start of
the routine and POP them at the end.

4-13

Applications SDK-51 MCS-51

Register bank 0:
RO is a pointer to the table (data locations 30H, 31H, and 32H) containing
the settings for port 1 that enable columns 0, 1, and 2 in sequence and
condition the row pins for input.
R1 is the row counter.
R2 is used to pass parameters to monitor system calls.

On-chip data memory locations 20H through 23H:
DBYTE 20H, bit addresses 00H and 01H
Bit 00H is a flag indicating a key closure on the last scan.
Bit 01H is a flag indicating a key closure on the current scan.
DBYTE 21H contains the key matrix value (00, 01, 02, 03, 10, 11, 12, 13, 20,
21, 22, or 23) of the key detected on the previous scan.
DBYTE 22H contains the key value from the current scan.
DBYTE 23H contains the key value of the last character displayed.

On-chip data memory locations 30H, 31H, and 32H:
DBYTE 30H contains the value OEFH; the zero in bit 4 selects column 0
when the byte is written to port 1.
DBYTE 31H contains 0DFH; the zero in bit 5 selects column 1 when the
byte is written to port 1.
DBYTE 32H contains 0BFH; the zero in bit 6 selects column 2 when the
byte is written to port 1.

Example 4-2. Keypad Scan Program, Source Code

NOTE: All numeric values are hexadecimal.

Addr Instruction Comments
: Begin assembly mode with the command ASM ORG 0.
0000 LJMP 0079 ; Jump to start of main program.

: Press RETURN to end assembly mode so you can change the assembly pointer with the
- command ASM ORG 0B. This portion is the Timer 0 interrupt service routine.

000B CLR 0A9 ; Mask Timer O interrupt.
000D CLR 8C ; Stop timer.

000F MOV DPTR, #8000 ; Special SDK-51 requirement to
0012 MOVX @DPTR, A ; synchronize break hardware.

0013 MOV R1, #00 ; Initialize row counter.
0015 MOV A, 90 ; Read port 1.
0017 JNB 0EO, 0025 ; Test for 0 in LSB (key closure in current row). Location
; 0025 begins the routine to process the key closure.
001A INC R1 ; Increment row counter to point to next row.
001B RR A ; Rotate so next bit can be checked.
001C CJNE R1, #04, 0017 ; Have all rows been checked?
001F INC RO : Point to next column.
0020 CJNE RO, #33, 006F ; Have all columns been checked?
0023 SJMP 0046 ; If not, prepare to return from the current interrupt p

: (006FH) if all columns checked, jump to code which is
; executed after a complete pass through the columns
; (0046H).

- This portion of code is executed when a key closure is detected. It saves the value of the closed
: key for future use, and checks for the error condition of multiple keys pressed at the same time.

0025 SETB 01 ; Flag for key closure on current scan.

(Continued on next page)

4-14

SDK-51 MCS-51

Example 4-2. Keypad Scan Program, Source Code (Continued)
NOTE: All numeric values are hexadecimal.
Addr Instruction Comments
; This code saves the value of the key closed.
0027 PUSH OEO ; Save accumulator.
0029 MOV A, RO ; Load column pointer.
002A ANL A, #0F ; Mask off most significant nibble, then swap the column
002C SWAP A ; value into the high nibble.
002D ORL A, R1 ; Load row pointer in low nibble.
002E MOV 22, A ; Save the key value (column, row) in data byte 22H.
0030 POP OEO ; Restore accumulator.

; Begin error checks.

0032 JNB 00, 001A ; If no key closure on last pass, no error is possible, so
; continue with row scans.

; If there was a previous key closure, compare the key value of that closure with the current
: key value. If they are different, multiple key closures have occurred.

0035 PUSH 0EO ; Save accumulator.
0037 MOV A, 21 ; Load previous key value.
0039 CJNE A, 22, 0040 ; Compare to current key value;
; If they are different, jump to error section (0040H).
003C POP OEO ; Otherwise, pop accumulator and
003E SJMP 001A ; continue with row scans.

; This error routine corrects for a multiple key closure by clearing the previous key closure
; flag, in effect “forgetting” about that closure.

0040 CLR 00 ; Clear the previous key flag.
0042 POP OEO ; Pop accumulator.
0044 SJMP 001A ; Continue with row scans.

; This section of code is reached when one complete pass through the columns has been made.

0046 JNB 01, 006D ; If no closure detected, jump to clean-up steps near end of
; interrupt routine.
0049 JB 00, 0053 ; Closure detected on current pass; if also closure on previous

; pass, jump to compare section. Otherwise,
004C MOV 21, 22 ; Save the current key value,
004F SETB 00 ; set the previous closure flag,
0051 SJMP 0068 ; and jump to the clean-up code near end of routine.

; This code is reached when key closures are detected on two successive passes.

0053 MOV A, 22 ; Load value of current key.

0055 CJUNE A, 21, 004C ; If the current value is not the same as the previous value
; save the current value as the previous value (by jumping
; back to the save routine at location 004C).

0058 CJNE A, 23, 005D ; If the current value is not the same as the value now being
; displayed, jump to the display routine (005D).

005B SJMP 0068 ; Otherwise jump to the clean-up code near end of routine.

; This section displays the characters representing the key value.

005D PUSH OEO ; Save accumulator; note that the accumulator contains the key
; value to be displayed.

005F LCALL OEOOF ; Call monitor routine NEWLINE to clear the display.

0062 POP OEO ; Restore accumulator (NEWLINE uses the accumulator).

0064 MOV R2, A ; Load R2 with the value to be displayed in hexadecimal.

0065 LCALL OEO15 ; Call monitor routine LSTBYT to display the hexadecimal

; (ASCII) characters for the two nibbles.

(Continued on next page)

Applications

Applications SDK-51 MCS-51

Example 4-2. Keypad Scan Program, Source Code (Continued)

NOTE: All numeric values are hexadecimal.

Addr Instruction Comments

; The remainder of the service routine performs clean-up prior to returning.

0068 CLR 01 ; Clear current closure flag.

006A MOV 22, #OFF ; Blanks current key value to all ones.

006D MOV RO, #30 ; Begin scan again at column 0 via table pointer RO.

006F MOV 90, @R0O ; Writes table value out to port 1, enabling column 0 and
; conditioning row pins for input during interrupt.

0071 MOV 8C, #0F0 ; Reload THO with initial timer value (about 4 msec).

0074 SETB 8C ; Start timer 0.

0076 SETB 0A9 ; Enable timer 0 interrupt.

0078 RET! ; Return to main loop.

: Main routine, initialization section. This code is executed only once, at the beginning of ’

; program execution. .

0079 ANL 0B8, #0E1 ; Set all interrupts for priority 0, except EXTIO (reserved for
; SDK).

007C ANL 0AS8, #0E1 ; Mask all interrupts except EXTIO.

007F ANL 88, #03 ; Turn internal timer off.

0082 MOV 89, #01 ; Set timer mode for 16-bit internal timer.

0085 CLR 0D3 ; Select register bank 0 with

0087 CLR 0D4 ; these two instructions.

: The next five instructions set up the table of port 1 settings that enable columns 0, 1, and 2in
: sequence. The column enable bits are P14 (column 0), P15 (column 1, and P16 (column 2);
. writing a 0 to the bit enables the corresponding column. The low nibble of the port 1 value
: (always OFFH in the table) conditions pins P10 through P13 (corresponding to the four rows)
; for input during the interrupt routine.

0089 MOV RO, #30 ; Initialize RO, the index into the table of port 1 settings.
008B MOV 30, #0EF ; Enables column 0 when written to port 1.
008E MOV 31, #0DF ; Enables column 1 when written to port 1.
0091 MOV 32, #0BF ; Enables column 2 when written to port 1.
0094 MOV 90, @R0O ; Writes table value to port 1, (enabling column 0 this time).
0096 MOV 22, #0OFF ; Blank current key value.
0099 MOV 21, #OFF ; Blank previous key value.
009C CLR 01 ; Clear current key closed flag.
009E CLR 00 ; Clear previous key closed flag.
00AO MOV 23, #0FF ; Blank display value.
00A3 MOV 8C, #0F0 ; Set timer 0 for 4 msec
" 00AB MOV 8A, #00 ; initially; the interrupt routine restarts the timer
; before returning each time.
00A9 SETB 8C ; Start timer 0.
00AB SETB 0A9 ; Enable timer 0 interrupt.

: Now the program enters the main loop, waiting for an interrupt. In a normal program,
; the main loop would perform one or more processing tasks.

00AD SJMP 00AD ; Loop forever. Interrupts return here. To halt
; execution, press ESC.

Example 4-3. Keypad Scan Program, Hexadecimal

This example uses the continuation feature for memory change commands. Enter
the CBYTE command on the first two lines only. After the first line, end each line
with a comma before the RETURN; the comma causes the system to continue the
command to the next line, display the keyword CBYT, the next available address,
the equals sign, and the hyphen prompt. The display for each line after the second
line is shown in parentheses. After the = sign on each line, enter the hexadecimal
values shown.

Each command line loads one instruction into code memory. The result is the same
as the assembler mode commands, but the number of keystrokes is reduced.

CBYTE 0 = 02, 00, 79
CBYT 000B = 0C2, 0A9,

(Continued on next page)

4-16

SDK-51 MCS-51 Applications

Example 4-3. Keypad Scan Program, Hexadecimal (Continued)

(CBYT 000D =) 0C2, 8C,

(CBYT 0OO0OF =) 90, 80, 00,
(CBYT 0012 =) OFOQ,

(CBYT 0013 =) 79, 00,
(CBYT 0015 =) OE5, 90,
(CBYT 0017 =) 30, OEO, 0B,

(CBYT 001A =) 09,
(CBYT 001B =) 03,
(CBYT 001C =) 0B9, 04, OFS8,

(CBYT 001F =) 08,

(CBYT 0020 =) 0B8, 33, 4C,
(CBYT 0023 =) 80, 21,
(CBYT 0025 =) 0D2, 01,

(CBYT 0027 =) 0CO, OEOQ,
(CBYT 0029 =) OES,
(CBYT 002A =) 54, OF,
(CBYT 002C =) 0C4,
(CBYT 002D =) 49,

(CBYT 002E =) OF5, 22,
(CBYT 0030 =) 0DO, OEO,
(CBYT 0032 =) 30, 00, OES5,
(CBYT 0035 =) 0CO, OEQ,
(CBYT 0037 =) OE5, 21,
(CBYT 0039 =) 0B5, 22, 04,
(CBYT 003C =) 0DO, 0EQ,
(CBYT 003E =) 80, ODA,
(CBYT 0040 =) 0C2, 00,
(CBYT 0042 =) 0DO, OEO,
(CBYT 0044 =) 80, 0D4,
(CBYT 0046 =) 30, 01, 24,
(CBYT 0049 =) 20, 00, 07,
(CBYT 004C =) 85, 22, 21,
(CBYT 004F =) 0D2, 00,
(CBYT 0051 =) 80, 15,
(CBYT 0053 =) OE5, 22,
(CBYT 0055 =) 0B5, 21, OF4,
(CBYT 0058 =) 0B5, 23, 02,
(CBYT 005B =) 80, 0B,
(CBYT 005D =) 0CO, OEQ,

(CBYT 005F =) 12, OEO, OF,
(CBYT 0062 =) 0DO, 0EO,
(CBYT 0064 =) OFA,

(

Continued on next page)

4-17

Applications SDK-51 MCS-51

Example 4-3. Keypad Scan Program, Hexadecimal (Continued)

CBYT 0065 =) 12, OEOQ, 15,
CBYT 0068 =) 0C2, 01,

CBYT 006A =) 75, 22, OFF,
CBYT 006D =) 78, 30,

CBYT 00AB =) 0D2, 0A9,
CBYT 00AD =) 80, OFE

(

(

(

(

(CBYT 006F =) 86, 90,
(CBYT 0071 =) 75, 8C, OFO, ;
(CBYT 0074 =) 0D2, 8C,
(CBYT 0076 =) 0D2, 0A9,
(CBYT 0078 =) 3

(CBYT 0079 =) 53, 0B8, OET,
(CBYT 007C =) 53, 0A8, OE1,
(CBYT 007F =) 53, 88, 03,
(CBYT 0082 =) 75, 89, 01,
(CBYT 0085 =) 0C2, 0D3,
(CBYT 0087 =) 0C2, 0D4,
(CBYT 0089 =) 78, 30,
(CBYT 008B =) 75, 30, OEF,
(CBYT 008E =) 75, 31, ODF,
(CBYT 0091 =) 75, 32, OBF,
(CBYT 0094 =) 86, 90,
(CBYT 0096 =) 75, 22, OFF,
(CBYT 0099 =) 75, 21, OFF,
(CBYT 009C =) 0C2, 01,
(CBYT 009E =) 0C2, 00,
(CBYT 00AO =) 75, 23, OFF,
(CBYT 00A3 =) 75, 8C, OFO,
(CBYT 00A6 =) 75, 8A, 00,
(CBYT 00A9 =) 0D2, 8C,

{

{

Prototype Area Techniques

The prototype area of the SDK-51 is located on the left side of the board. It contains
1875 solder terminal holes, spaced at 0.01 inch for use with standard dual in-line
package IC sockets or discrete components. Adjacent to the prototype area,
connectors J3, J4 and J5 bring out the address, data, and control pins of the 8031
microcontroller and the 8155-2 parallel I/0 interface. The pins of J3, J4, and Jh
nearest the prototype area are the signals; the pins nearest the component area are
grounded. Locations J9 (GND) and J10 (+5 VDC) bring out the power lines; the pads
around these locations are designed to receive screw-on binding posts.

In order to make this area more versatile for evaluating user designed circuits, it is
suggested that solder-tail or wire-wrap posts be installed, rather than making
solder connections directly to the holes in the board. Wire connections can thus be
removed easily without damaging the holes in the board. For installation of IC
devices, sockets with wire-wrap posts or solder end terminals are again suggested,

4-18

SDK-51 MCS-51 Applications

allowing easy modification of a circuit. When using the solder-tail posts, it may be
desirable to install them on the back side of the board, to allow all interconnections
to be kept on the bottom side of the board.

Memory Expansion

One use of the prototype area is to expand the user configurable memory space. As
discussed in Chapter 3, printed wiring on the SDk-51 allows up to 24K bytes of
RAM or ROM to be installed. The SDK-51 decoding logic, however, allows the entire
32K bytes of SDK-51 user configurable memory to be addressed. If the additional
8K bytes of memory is desired, it can be installed off-board or in the wire wrap area
of the board. Note that besides the RAM an address decoder may be required,
depending on the type of RAM device used. On the SDK-51, the 74L.S138 circuits at
U26 and U51 serve as decoders for memory 0 and memory 1 respectively. It is
suggested that sockets be installed for these devices.

Data lines DBO through DB7 (J4 pins P00 through P07) must also be jumpered to
the expansion memory devices.

The additional memory can be assigned to any of the four address ranges of user)
configurable memory. Address range 6000H through 7FFF would be typical; for i
this range, attach a jumper wire from the A pin of W32, W33, W34, or W35 to the
Chip Select input on each memory device. Refer to Memory Configuration in
Chapter 3 for more details.

For RAM devices, the WR/ signal is output at pin P36 on J3. If write-protection is
desired (using the TOP circuit), the RAMWR/ signal (indicating a permitted write
operation) is available at several points; pin 3 of U66 is the origin, and pin 10 of
each 2114 RAM device is the destination.

4-19/4-20

APPENDIX A
TELETYPEWRITER MODIFICATIONS

Introduction

This appendix provides information required to modify a Model ASR-33
Teletypewriter for use with the SDK-51.

Internal Modifications

WARNING I

Hazardous voltages are exposed when the top cover of the teletypewriter
is removed. To prevent accidental shock, disconnect the teleprinter
power cord before proceeding beyond this point.

Remove the top cover and modify the teletypewriter as follows:

a.

b.

Remove the blue lead from 750-ohm tap on current source register, reconnect
this lead to 1450-ohm tap. (Refer to figures A-1 and A-2).

On terminal block, change two wires as follows to create an internal full-duplex

loop (refer to figures A-1 and A-3):

1. Remove brown/yellow lead from terminal 3; reconnect this lead to terminal
5,

2. Remove white/blue lead from terminal 4; reconnect this lead to terminal 5.

On terminal block, remove violet lead from terminal 8; reconnect this lead to
terminal 9. This changes the receiver current level from 60 mA to 20 mA.

A relay circuit card must be fabricated and connected to the paper tape reader
driver circuit. The relay circuit card to be fabricated requires a delay, a diode, a
thyractor, a small ‘vector’ board for mounting the components, and suitable
hardware for mounting the assembled relay card.

MODE
SWITCH TOP VIEW
CIRCOIT % I !
cRARli’J NN I |
| KEYBOARD | —
: | | | reapEr
CAPACITO
AC R—\ |
| |
II PRINTER UNIT |
| TAPE
CURRENT
SolneE: —\ | pistriBUTOR | PUNCH
TRIP MAGNET
S | ASSEMBLY |
POWER_\ = . JU | [caro |
SUPPLY I |
ool |0 | (em)
TERMINAL | |
BLOCK | o | |
| |

E_.

TELETYPE MODEL 33TC

Figure A-1. Teletype Component Layout

A-1

Teletypewriter Modifications SDK-51 MCS-51

A-2

Figure A-3. Terminal Block

A circuit diagram of the relay circuit card is included in figure A-4; this diagram
also includes the part numbers of the relay, diode, and thyractor. (Note that a 470-
ohm resistor and a 0.1 uF capacitor may be substituted for the thyractor.) After the
relay circuit card has been assembled, mount it in position as shown in figure A-5.
Secure the card to the base plate using two self-tapping screws. Connect the relay
circuit to the distributor trip magnet and mode switch as follows:

a. Refer to figure A-4 and connect a wire (Wire ‘A’) from relay circuit card to
terminal L2 on mode switch. (See figure A-6.)

b. Disconnect brown wire shown in figure A-7 from plastic connector. Connect
this brown wire to terminal 12 on mode switch. (Brown wire will have to be
extended.)

c. Refer to figure A-4 and connect a wire (Wire ‘B’) from relay circuit board to
terminal L1 on mode switch.

SDK-51 MCS-51

External Connections

Connect a two-wire receive loop, a two-wire send loop, and a two-wire tape reader
control loop to the external device as shown in figure A-4. The external connector
pin numbers shown in figure A-4 are for interface with an RS232C type, 25-pin
connector.

TERMINAL BLOCK 151411

!JR-1005

1A
NORMAL CONTACTS
470 Q ;W OPEN
IRELAV CIRCUIT CARD

I0A1200V L M e e S

2 VIO 20MA
25-PIN 9
EXTERNAL e VEL SoMA \/C::‘
CONNECTOR 80(4 e e e e e -
BLK/GRN
() 7o WHT/BRN
12 RED/GRN
RECEIVE 5 WHT/YEL
—(25) ~~—0< WHT/BLK
WHT/BLU FULL DUPLEX
5@(BRN/YEL \@
4 Bt s B it i it O SRl O T
——(24) { GRN
SEND RED HALF DUPLEX
——(12) Sl —T——"gay ~ "~
N WHT/RED
2 BLK
< BLK
1 WHT 117VAC
®< WHT
° SONEBTGR DISTRIBUTOR TRIP
| l"ﬂ MAGNET
_/ |
WIRE'A’
__@ B e e : — /™ YEL
AP 1] GE BRN 117 VAC
. COENF:.Z%DLER IN914 * X 6RS20- l COMMON
——(21) | | SpaB4 | 0.11uF 470Q
T "POTTER & BRUMFIELD
| RELAY [
—
| | =
*ALTERNATE CONTACT PROTECTION 12VDC,600Q COIL
CIRCUIT |

MODE SWITCH
(FRONT VIEW)

Figure A-4. Teletypewriter Modifications

MOUNTING POSITION]
FOR CIRCUIT CARD |

Figure A-5. Relay Circuit

Teletypewriter Modifications

A-3

Teletypewriter Modifications

A-4

Figure A-6. Mode Switch

Figure A-7. Distributor Trip Magnet

SDK-51 MCS-51

APPENDIX B
ERROR MESSAGES

This appendix describes the error messages produced by the SDK-51 monitor, with
suggestions for corrective action.

ERR=00 PROM CKSUM

Monitor firmware checksum error. Check that the monitor PROMs are
correctly socketed. The PROM labeled EOOOH goes in socket U59, and the
PROM labeled FOOOH goes in socket U60. Check for bent pins on the socket. If
error persists, contact Intel field service (see Service Assistance at front of
manual).

ERR=01 INVALID WORD

One or more entries in the command cannot be identified as keywords or
abbreviations. Enter the command again.

ERR=02 INVALID COMMAND

The first entry in the command cannot be identified as a valid command
keyword. Enter the command again.

ERR=03 NUMBER REQ

The command required a numeric entry at some point, but some other entry
occurred instead. Note that hexadecimal numbers must begin with numerals;
5F is acceptable, but F5 must be entered with a leading zero: 0F5. Enter the
command again.

ERR=04 RETURN REQ

The command contained entries after the last valid entry. The command was
complete at some point, but instead of RETURN, some other entry was added.
Check command syntax and enter the command again.

ERR=05 EQUAL OR RTRN REQ

The command begins with a keyword referring to some system element that
can be displayed or changed. To display the value of the element, follow the
keyword with a RETURN; to change the value, follow the keyword with an
equals sign (=), then the new value. Any other kind of entry produces this error.

ERR=06 COMMA REQ

A comma is required to separate bytes in a list, or to separate operands in an
instruction for the ASM command. Enter the command again. For ASM, press
RETURN to clear the error, then enter ASM to begin assembler mode at the
address where the error occurred.

ERR=07 PARTITION ADR

Ending address of partition in breakpoint or memory access command is less
than beginning address. Enter the partition again, with the lower of the two
bounding addresses first.

ERR=08 RESET OR ON REQ

A LIST command contained an entry after the equals sign (=) other than
RESET or ON. Enter the command again; to display the LIST setting, enter
LIST, then press RETURN.

B-1

Error Messages SDK-51 MCS-51

ERR=09 DECIMAL NUM REQ

In the STEP command, the autostep delay value must be a decimal digit, 0
through 9. Enter the command again.

ERR=0A ILLEGAL BAUD VAL

The command attempted to set the baud rate to a value other than 110, 300, 600,
1200, 2400, 4800, or 9600. Enter the command again using one of the allowable
values.

ERR=0B BRK ENABL SYNTAX

In a GO command, the final clause that disables/enables program and/or data
breakpoints has one of the following forms: FOREVER, TILL PROGRAM,
TILL DATA, or TILL PROGRAM OR DATA. Any other entry produces an
error. An incorrect FROM clause after GO or STEP also produces ERR 0B.
Enter the command again.

ERR=0C NUM OR RESET REQ

After the command entry BR = (or ABR =), you must enter an address, a
partition, or (with BR) the keyword RESET. Enter the command again; to
display the breakpoint settings, enter the keyword BR, then press RETURN.

ERR=0D TOP > 7FFFH

The command attempted to set a Top of Program memory address higher than
the highest address in user-configurable memory. Addresses 8000H and higher
are in system memory and cannot be write-protected by the user. Enter the
command again with a lower value.

ERR=0E DISPLAY ONLY

The CAUSE command displays the cause of the last break in execution of the
user program. The cause cannot be changed from the console. To display the
break cause, enter the keyword CAUSE, then press RETURN.

ERR=0F UNDEFINED OPCODE

While disassembling memory with the DASM command, opcode 0A5H was
encountered. This opcode value is undefined. Disassembly is terminated.

ERR=10 ASSEMBLY SYNTAX

In assembler mode, an instruction was entered with incorrect format. Check
the instruction syntax. As a result of the error, nothing was assembled (the
assembly pointer is unchanged). Press RETURN to clear the error, then enter
ASM to begin assembler mode again at the address where the error occurred.

ERR=11 ADR OUT OF RANGE

In assembler mode, the address in an absolute jump or call instruction requires
more than 11 bits. AJMP and ACALL addresses must be within a 2K byte
page, since they are encoded in the three high-order bits of the opcode byte and
the eight bits of the second byte. Check the address or use a LIMP/LCALL
instead. As a result of the error, nothing has been assembled (the assembly
pointer is unchanged). Press RETURN to clear the error, then enter ASM to
begin assembler mode at the address where the error occurred.

B-2

SDK-51 MCS-51 Error Messages

ERR=12 ADR OUT OF RANGE

In assembler mode, the address in a short jump yielded a relative offset greater
than seven bits plus sign bit. Check the address or use another form of jump
that allows larger offsets. As a result of the error, nothing was assembled (the
assembly pointer is unchanged). Press RETURN to clear the error, then enter
ASM to begin assembler mode where the error occurred.

ERR=13 ASM PC > OFFFFH

Assembling the current instruction (in assembler mode) would cause the
assembly pointer to overflow from OFFFFH to 0000H. In general, the user is
cautioned against attempting to assemble instructions into system memory
(addresses above 7TFFFH); however, no automatic protection is provided for
system memory. As a result of the error, nothing was assembled (the assembly
pointer is unchanged). Press RETURN to clear the error, then enter ASM ORG
address to begin assembly mode at a new address.

KRR=14 FILE RD OR WR

Hexadecimal file (on UPLOAD or DOWNLOAD) or binary file (on LOAD or
SAVE) read or write error (including checksum). Try to access the file again.

ERR=15 MEMORY WRITE

Value read back after write with CBYTE fails to match value written. Possibly
memory i1s ROM, or is non-existent (not installed).

KRR=16 EX ACROSS ADR 03

Execution over vector at location 3. Location 3 is reserved for the system
interrupts (breakpoints, UPI operations, guarded access). The user may not
execute (with GO or STEP) across this location. The stack pointer may have
been changed; verify stack pointer value before continuing execution.

ERR=17 NO RAM AT ADR 03

No RAM at location 3. The system overwrites location 03H with the correct
jump for the system interrupt. If the memory assigned to location 3 is ROM or
PROM, or if no memory is installed at this location, the write fails. The system
will operate correctly if the ROM or PROM contains the correct jump
instruction (LJMP 0E003H); it will not operate correctly if no memory 1s
installed. Begin execution from another address.

KRR=18 CBYTE TYPE REQ

A block move or copy command can be used with memory type CBYTE (user
program memory) only. Refer to User Program Memory in Chapter 2 for
details.

KRR=19 CHANGE ONLY

The ABR command (add breakpoints) has the syntax
ABR = address [, address]...

This command requires the equals sign and list of addresses. To display the
breakpoint addresses currently set, enter the command BR.

ERR=1A CBY OR NUM REQD

A command that begins with CBYTE partition = must continue with either a
number (list of bytes) or an entry of the form CBYTE address. Refer to User
Program Memory commands in chapter 2 for details.

B-3/B-4

inter SDK-51 MCS™-51
System Design Kit User's Guide
121588-002

REQUEST FOR READER’S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE ‘

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE________ ZIP CODE

Please check here if you require a written reply. O

WE'D LIKE YOUR COMMENTS . . .

This document is one of a series describing Intel products. Your comments on the back of this
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

Il rese
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

DSO-N Technical Publications

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	Front Cover
	i
	ii
	iii
	iv
	v
	vi
	General Information

	1-1
	1-2
	1-3 / 1-4

	Operating Instructions
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44

	Functional Description

	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19 / 3-20

	3-21 / 3-22

	Applications

	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19 / 4-20

	Teletypewriter Modifications

	A-1
	A-2
	A-3
	A-4

	Error Messages
	B-1
	B-2
	B-3 / B-4

	Comment 1
	Comment 2
	Rear Cover

